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Abstract

While banks and regulators use sophisticated mathematical methods to measure a
bank’s solvency risk, they use relatively simple tools for a bank’s liquidity risk such as
coverage ratios, sensitivity analyses, and scenario analyses. In this thesis we present a
more rigorous framework that allows us to measure a bank’s liquidity risk within the
standard economic capital and RAROC setting.

In the first part, we introduce the concept of liquidity cost profiles as a quantification
of a bank’s illiquidity at balance sheet level. The profile relies on a nonlinear liquidity
cost term that formalizes the idea that banks can run up significant value losses, or
even default, when their unsecured borrowing capacity is severely limited and they are
required to generate cash on short notice from its asset portfolio in illiquid secondary
asset markets. The liquidity cost profiles lead to the key concept of liquidity-adjusted
risk measures defined on the vector space of balance sheet positions under liquidity
call functions. We study the model-free effects of adding, scaling, and mixing balance
sheets. In particular, we show that convexity and positive super-homogeneity of risk
measures is preserved in terms of positions under the liquidity adjustment, given
certain moderate conditions are met, while coherence is not, reflecting the common
idea that size does matter in the face of liquidity risk. Nevertheless, we argue that
coherence remains a natural assumption at the level of underlying risk measures for
its reasonable properties in the absence of liquidity risk. Convexity shows that even
under liquidity risk the concept of risk diversification survives. In addition, we show
that in the presence of liquidity risk a merger can create extra risk. We conclude the first
part by showing that a liquidity-adjustment of the well-known Euler capital allocation
principle is possible without losing the soundness property that justifies the principle.
However, it is in general not possible to combine soundness with the total allocation
property for both the numerator and the denominator in liquidity-adjusted RAROC.

In the second part, we present an illustration of the framework in the context of a
semi-realistic economic capital setting. We characterize the bank’s funding risk with
the help of a Bernoulli mixture model, using the bank’s capital losses as the mixing
variable, and use standard marginal risk models for credit, market, and operational risk.
After formulate the joint model using a copula, we analyze the impact of balance sheet
composition on liquidity risk. Furthermore, we derive a simple, robust, and efficient
numerical algorithm for the computation of the optimal liquidity costs per scenario.

Liquidity-adjusted risk measures could be a useful addition to banking regulation
and bank management as they capture essential features of a bank’s liquidity risk, can
be combined with existing risk management systems, possess reasonable properties
under portfolio manipulations, and lead to an intuitive risk ranking of banks.
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Samenvatting

Banken en toezichthouders gebruiken geavanceerde wiskundige methoden voor het
bepalen van het risico van een bank met betrekking tot solvabiliteit, maar ze gebruiken
relatief eenvoudige methoden voor het liquiditeitsrisico van een bank, zoals dekkings-
graden, gevoeligheidsanalyses, en scenario-analyses. In dit proefschrift presenteren we
een meer structurele aanpak die ons in staat stelt het liquiditeitsrisico van een bank te
meten binnen het gebruikelijke kader van ‘Economic Capital’ en RAROC.

In het eerste gedeelte introduceren we het begrip ‘liquiditeitskosten-profiel’ als
weergave van de mate van illiquiditeit van een bank op balansniveau. Dit begrip berust
op een niet-lineaire term voor liquiditeitskosten, die voortkomt uit het verschijnsel
dat banken aanzienlijke verliezen kunnen oplopen, en zelf failliet kunnen gaan, wan-
neer hun mogelijkheid om ongedekte leningen aan te gaan sterk beperkt is, en ze
gedwongen zijn op korte termijn cash te genereren uit hun portefeuille van activa op
een illiquide financiële markt. Liquiditeitskosten-profielen leiden tot het sleutelbegrip
‘liquiditeits-aangepaste risicomaten’, gedefinieerd op de vectorruimte van balansposi-
ties onderhevig aan plotselinge vraag naar liquiditeit (‘liquidity calls’). We bestuderen
effecten van het samenvoegen, schalen, en combineren van balansen. In het bijzonder
laten we zien dat de eigenschappen van convexiteit en positief-superhomogeniteit van
risicomaten behouden blijft, onder redelijk ruime aannamen, terwijl dat niet geldt voor
de eigenschap van coherentie. Dit weerspiegelt het feit dat omvang er wel degelijk toe
doet als het om liquiditeit gaat, maar we betogen dat desondanks coherentie wel een
natuurlijke aanname blijft op het niveau van onderliggende risicomaten. De eigenschap
van convexiteit geeft aan dat zelfs onder liquiditeitsrisico het begrip risico-diversificatie
van toepassing blijft. Daarnaast laten we zien dat in aanwezigheid van liquiditeitsrisico,
het samenvoegen van balansen (een ‘merger’) extra risico kan creëren. We sluiten het
eerste gedeelte af met een stuk waarin we laten zien dat de aanpassing voor liquiditeit
van het welbekende Euler-allocatie principe mogelijk is, met inachtneming van het
begrip ‘soundness’ dat dit principe rechtvaardigt. Echter, het is in het algemeen niet
haalbaar dit begrip te combineren met volledige allocatie van zowel de teller als de
noemer in RAROC, aangepast voor liquiditeit.

In het tweede gedeelte illustreren we de aanpak aan de hand van een semi-realistische
model voor economisch kapitaal. We karakteriseren het financieringsrisico met behulp
van een ‘Bernoulli mixing’ model, waarbij we de kapitaalsverliezen van een bank als
‘mixing’variabele nemen, en standaardmodellen gebruiken voor het krediet-, markt-
en operationeel risico. Nadat we een model voor de gezamenlijke verdeling hebben
geformuleerd in termen van zogenaamde copula’s, analyseren we de impact van de
samenstelling van de balans op liquiditeitsrisico. Daarnaast leiden we een eenvoudig,
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robuust en efficiënt algoritme af voor de berekening van optimale liquiditeitskosten
per scenario.

Liquiditeits-aangepaste risicomaten kunnen een bruikbare aanvulling leveren op
het reguleren en besturen van banken, omdat ze essentiële aspecten van het liquiditeit-
srisico van een bank weergeven, ze gecombineerd kunnen worden met bestaande
systemen voor risicomanagement, ze aannemelijke eigenschappen hebben onder aan-
passingen van portefeuilles, en leiden tot een intuïtieve rangschikking van banken.
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1
Introduction

1.1 Problem statement and research questions

Bank managers have an incentive to manage their business prudently so as to maximize

economic value while avoiding the occurrence of default.1 Default can occur through

two main mechanisms: (1) Technical insolvency: the asset portfolio value drops below

the notional value of the liability portfolio and (2) illiquidity: the bank is unable to

pay its monetary obligations on time, despite being technically solvent.2 Since it is

in general not possible to earn profits in financial markets without being exposed to

risk, i.e., there is no “free lunch”, banks actively take on risks. For the bank these risks

involve, value losses on its trading positions due to price fluctuations, i.e., market

risk, losses on its portfolio of loans and bonds, i.e., credit risk, and losses related to

inadequate or failed internal processes, fraud and litigation, i.e., operational risk. As

these value losses decrease the bank’s capital position and hence endanger the bank’s

continuity, the management of these risks is paramount. Nowadays banks use partly

due to the introduction of quantitative requirements by the supervisory authorities

sophisticated mathematical methods to measure and manage the technical insolvency

leg of its own default risk. In particular, banks measure their solvency risk with the

help of probability theory, the theory of stochastic processes, statistics, and the theory

of monetary risk measures after Artzner et al. (1999). In addition, banks employ a

wide range of quantitative tools to manage their risk exposure, such as diversification,

1Our ideas apply to any financial investor or even economic agent, but we emphasize the situation of
banks due some particularities of their business model with regard to liquidity risk.

2From an “external” market perspective the two channels are usually subsumed under the credit risk
of the bank (probability of default). However, from an “internal” bank perspective it is meaningful to
distinguish between the two mechanisms. We take the latter position in this thesis.



2 � Introduction

hedging, insuring, and securization.

In contrast to solvency risk, liquidity risk of banks is mostly assessed by relatively ad-

hoc means, typically involving a combination of financial ratios, constraints, sensitivity

analyses, and stress scenario analyses. Recently, the Basel Committee proposed, under

the header of Basel III, an attempt to harmonize liquidity risk supervision (BIS, 2010).

In particular, the committee suggests that banks must show that they (1) can survive

for 30 days under an acute liquidity stress scenario specified by the supervisors and (2)

have an acceptable amount of stable funding based on the liquidity characteristics of

the bank’s on- and off-balance sheet assets and activities over a one year horizon.

While we think that having standardized liquidity risk regulations is a step in the

right direction, we also note that the level of sophistication of these new regulations is

comparable to the first Basel Accord for solvency risk3 and is similar to what is already

common practice in most large banks. We believe that liquidity risk measurement

and management would benefit from a formal treatment akin to solvency risk. While

we do not claim that a mathematical treatment of liquidity risk necessarily leads to

better liquidity risk management in practice, we believe it has an advantage over an

ad-hoc approach in that it allow us to study its non-trivial properties under various

assumptions. This way we can illustrate its benefits as well as its limitations in a

consistent manner.4 In contrast, the use of mathematical models in the financial world

has been criticized by some as being partially responsible for the recent Subprime crisis.

While we agree that sometimes the use of mathematical models can lead to real life

problems, we argue that models themselves are not the problem, only the inappropriate

use of them by people.5 Furthermore, in this thesis we do not focus on a particular class

of restrictive probability models but a general and flexible mathematical framework.

A more practical argument for the need of a mathematical treatment of liquidity risk

is one of proportionality. The series of bank defaults due to illiquidity, such as Bear

Stearns, Lehman Brothers, and Northern Rock, showed that liquidity risk as a default

channel is at least as important as default by insolvency. Consequently, if regulators

and bank managers believe in the usefulness of a formal treatment of solvency risk in

banks, then they should also support it for liquidity risk.

Even though most people think of stochastic models when they think of mathemati-

cal modeling, we often need a mathematical framework first that clarifies what actually

should be modeled before such models can be developed. Examples of formalisms are

the capital adequacy framework after Artzner et al. (1999) for a bank’s solvency risk and

Cramér-Lundberg’s ruin framework in actuarial mathematics (see, e.g., Buehlmann

3This is not surprising, considering the time and effort it took to advance the solvency regulations
from Basel I to the level of Basel II.

4Perhaps a good example for the value of a mathematical approach in the context of financial risk
measurement is that Artzner et al. (1999) show that VaR is in general not subadditive and hence using it
can lead to some unpleasant results under certain assumptions.

5However, we think there is a resemblance to the topic of gun control and the argument that guns do
not kill, but people do. While this may be correct in a sense, any sincere policy maker has to take into
account what the combination of impulsiveness of people’s actions and the availability of guns can lead
to. The same may be said about the availability of mathematical models.
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(1997)). Admittedly, it sometimes is straightforward what needs to be modeled and

no elaborate discussion is needed. However, we think that this does not apply in this

case and liquidity risk would benefit from the development of a sound mathematical

framework. The main goal of this thesis is to develop such a formalism.

During the recent financial crisis, we have witnessed that banks that were technically

solvent and acceptable in the capital adequacy sense experienced severe difficulties

to stay liquid and some even failed because of illiquidity (Morris and Shin, 2009).

Extending this phenomenon a bit, we believe it is reasonable to say that:

Key observation 1: In practice, adequate capitalization in terms of eco-

nomic capital (EC)6 is not a sufficient condition for adequate liquidity of a

bank.

There are two ways to look at this observation. On the one hand, this should not surprise

us because conceptually liquidity risk does not enter the standard capital adequacy

framework. Of course, bank managers, regulators, and rating agencies are aware of that

as they assess a bank’s liquidity risk typically with the help of a cash flow mismatch

framework and various stress scenarios. This analysis is usually completely divorced

from the capital adequacy framework. On the other hand, we would in principle expect

that a bank for which its available capital is higher than its EC, provided that the latter

includes all material risks, will not suffer from funding problems. Consequently, during

the recent Subprime crisis investors must have doubted the comprehensiveness and/or

some of the assumptions of the bank’s EC models and hence believed that banks

underestimated their EC and/or overstated their available capital.

This brings us to a second important observation. Brunnermeier et al. (2009)

maintain that linking capital adequacy and liquidity risk is crucial to strengthen the

resilience of the financial system as a whole.

Key observation 2: “Financial institutions who hold assets with low mar-

ket liquidity and long-maturity and fund them with short-maturity assets

should incur a higher capital charge. We believe this will internalise the sys-

temic risks these mismatches cause and incentive banks to reduce funding

liquidity risk.” (Brunnermeier et al., 2009, p. 37)7

The final observation deals with the idea that we ought to look at the riskiness of the

asset and its funding structure.

Key observation 3: “Conceptually, regulatory capital [economic capital]
should be set aside against the riskiness of the combination of an asset and

its funding, since the riskiness of an asset [portfolio] depends to a large

extent on the way it is funded.” (Brunnermeier et al., 2009, p. 41).

6In this thesis, we use the term EC instead of regulatory capital (RC), because we would like to abstract
from the exact functional form of the actual RC after Basel II. However, the ideas presented in this thesis
may also be useful for future RC formulations.

7To avoid confusion, the mismatch cannot refer to the mismatches related to interest rate risk in the
banking book of the bank, because these effects are typically already included in the EC.
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We think that because capital requirements and economic capital play such a promi-

nent role as a management control tool within banks and as a signaling tool in the

financial world, it would be advantageous to be able to adjust the standard capital

adequacy framework for some notion of liquidity risk. However, bringing solvency

and liquidity risk measurement of banks together in one conceptual framework is not

done in practice (cf., Basel III, BIS (2010)), mostly because it is believed that the two

concepts do not mix well. One reason is that there is the belief that stochastic modeling

of liquidity risk is particular hard and hence difficult to combine with solvency risk

modeling.8 Another possible explanation is that the capital adequacy setting is typically

static which is reasonable for solvency risk but problematic for liquidity risk because of

the importance of timing of cash flows and other dynamic elements. Conversely, EC

should conceptually take into account all potential risks that can lead to a decline of a

bank’s capital and this includes, e.g., values losses from distress liquidation in times of

liquidity problems (see also Klaassen and van Eeghen (2009) on p. 44). While we agree

that bringing the two concepts together in one framework is not necessarily compelling,

we believe that it is pragmatic and the theoretical nature of a liquidity risk adjustment

for EC is the fundamental concern of this thesis. We would like to stress the fact that

this thesis is about laying the theoretical groundwork for a more rigorous approach to

liquidity risk measurement and not about concrete applications.

1.2 Liquidity risk and banks

What is the liquidity risk of a bank? There are two basic dimensions that can be

associated with liquidity risk: (1) costs in the widest sense arising from difficulties

to meet obligations (no default) and more severely (2) the inability of a bank to generate

sufficient cash to pay its obligations (default). The former comes in degrees, whereas

the latter is a binary (yes or no) concept. We will refer to the cost character as Type

1 liquidity risk and the default character as Type 2 liquidity risk from here on. The

costs of Type 1 liquidity risk include increased funding costs in capital markets due to

systematic or idiosyncratic factors but also value losses due to the liquidation of assets

in periods of distress. We do not focus on the former costs in this thesis because they

are typically already includes as an ALM module in a bank’s EC.

In practice banks commonly associate the notion of liquidity risk, sometimes re-

ferred to as funding liquidity risk or contingency liquidity risk (Matz and Neu, 2007),

with the binary dimension (BIS, 2008a; Nikolaou, 2009), although the cost dimension

also plays an important role in the context of interest rate risk and fund transfer pricing

(FTP). While bank managers, regulators, and credit rating agencies have recognized

liquidity risk as an important issue for a long time, it has not received the same atten-

tion as solvency risk. Still, the Basel Committee on Banking Supervision has published

8For instance, in BIS (2009) on p. 6 we read, “Not all risks can be directly quantified. Material risks that
are difficult to quantify in an economic capital framework (eg funding liquidity risk or reputational risk)
should be captured in some form of compensating controls (sensitivity analysis, stress testing, scenario
analysis or similar risk control processes).”
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several documents over the years specifically related to the analysis and management

of liquidity risk in financial institutions (BIS, 2000, 2006, 2008b,a, 2010).

In BIS (2008b) the Basel Committee suggests that banks should (1) analyze the bank’s

ability to pay their obligations via a forward looking cumulative cash flow mismatch

framework under a small finite number of stress scenarios and (2) maintain a document

that explains who does what when severe liquidity problems arise, called a contingency

funding plan, without, however, prescribing anything specific. This changed with

the release of Basel III (BIS, 2010). In their latest document the Basel Committee

complements their previous catalog of best practices with two regulatory standards for

liquidity risk: (1) the Liquidity Coverage Ratio (LCR) and (2) the Net Stable Funding Ratio

(NSFR). The LCR amounts to dividing the value of the stock of unencumbered high-

quality liquid assets of the bank in stressed conditions by the total net cash outflows

over the next 30 calendar days under a prescribed stress scenario. This ratio should be

greater than one at all times. It is hoped that this requirement promotes short-term

resilience by ensuring that a bank has sufficient high-quality liquid assets to survive a

significant stress scenario lasting for one month. The NSFR sets the available amount

of stable funding in relation to the required amount of stable funding, which should

be greater than one at any time. Basel Committee hopes that the NSFR limits the over-

reliance on short-term wholesale funding during good times and encourages banks

to assess their liquidity risk across all on- and off-balance sheet items better. While

we believe that harmonizing liquidity risk regulation is a step in the right direction

and that both LCR and NSFR capture essential features of a bank’s liquidity risk, there

are in our opinion some limitations to this approach as well. Mainly, the level of

sophistication is comparable to the risk weighting approach of Basel 1 accord in that

it relies heavily on a rather crude classification of assets and liabilities in terms of

liquidity risk characteristics. Furthermore, there are no considerations of the possibility

of different types of stress scenarios. And finally, due to its deterministic character,

banks cannot use the comprehensive stochastic risk modeling they already do for EC

to support the liquidity risk analysis, which is unfortunate as we know that most of the

time liquidity problems are preceded by solvency problems.

Up until Basel III becomes binding for some banks, the actual regulatory require-

ments regarding liquidity risk vary from country to country, ranging from quantitative

to qualitative measures, as well as a mixture of the two types.9 Apart from qualitative

measures such as adequate management control structures, quantitative requirements

are either based on a stock approach or a maturity mismatch approach, or a combina-

tion of the two. The stock approach requires banks to hold a minimum amount of cash

or near-cash assets in relation to liabilities, mostly based on heuristic rules. Internally,

banks adhere to the BIS best practices of employing a combination of a forward looking

cumulative cash flow mismatch framework and stress scenarios to analyze liquidity

risk (BIS, 2006; Deutsche Bank, 2008, p. 102; The Goldman Sachs Group, 2006, p. 97;

9For instance, Germany and Austria use mostly quantitative regulations, whereas the United States
use qualitative regulations. UK, France and the Netherlands use a mixture (Lannoo and Casey, 2005).
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JPMorgan Chase & Co., 2007, p. 70; Citigroup Inc., 2008, p. 102; UBS AG, 2008, p. 151).

Likewise, credit rating agencies, factor the results of similar liquidity risk analyses

into the credit ratings they given to banks (Standard&Poor’s, 2004; Martin, 2007, p. 6).

Summing up, practitioners deem their actual portfolio position acceptable in terms of

liquidity risk as long as it meets a number of constraints expressed in terms of coverage

ratios (e.g., cash capital ratio), limits (e.g., principal amount of debt maturing in any

particular time interval), and stress scenario analysis outcomes in a cash flow mismatch

setting (e.g., entities should be self-funded or net providers of “liquidity” under each

stress scenario). Violations of any constraints lead to corrective actions. In addition,

national central banks monitor the adequacy of these analyses, completing the circle

similar to capital adequacy regulations. With the introduction of Basel III, liquidity risk

regulation will indeed be harmonized but it seems that most large banks are already

using something close to LCR and NSFR.

We can conclude that, while the concept of liquidity acceptability used in practice

and under the new regulations are not as elegant and rigorous as the formal concept of

acceptability proposed by modern risk measure theory following Artzner et al. (1999)

and the formalism presented in this thesis, they fulfill the same purpose and are not

necessarily less valuable. For this reason, we believe that the framework presented in

this thesis should be seen as a useful addition to the decision support toolbox of bank

managers and financial regulators and not as a replacement of existing liquidity risk

management tools.

1.3 Research approach and outline of contributions

The main concern of this thesis is to make economic capital and risk-adjusted return

on capital (RAROC) sensitive to Type 1 and Type 2 liquidity risk of a bank without

distorting the character and purpose of these tools. This requires the development

of a fundamental liquidity risk formalism that is flexible enough to be applied to any

form of bank, much like the economic capital and RAROC formalism. For this purpose,

we introduce in Chapter 2 the concept of a liquidity cost profile as a quantification

of a bank’s illiquidity at balance sheet level. The profile relies on a nonlinear liquidity

cost term that takes into account both the bank’s exposure to funding liquidity risk

and market liquidity risk. The cost term formalizes the idea that banks can run up

significant value losses, or even default, when their unsecured borrowing capacity is

severely limited and they are required to generate cash on short notice from its asset

portfolio in illiquid secondary asset markets. The reasoning behind the liquidity cost

term and our formalism is that idiosyncratic funding problems of a bank can potentially

be caused by asymmetric information between banks and fund providers. In such

situations fund providers have doubts about the bank’s creditworthiness and before the

bank can remove the uncertainty regarding their situation, funding is problematic for

the bank. During such times the bank needs a sufficiently large asset liquidity reserve,

i.e., a portfolio of unencumbered liquid assets, to service its debt obligations and buy
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enough time to improve its reputation. However, due to limited market liquidity during

such times any distress sales would lead to value losses that decrease the bank’s capital

(Type 1 liquidity risk) or even worse the bank could default because it cannot generate

enough cash from its asset position (Type 2 liquidity risk). The reasoning behind our

formalism is similar to the idea behind LCR and liquidity calls in our formalism are

closely related to the short-term total net cash flow in stress periods used in Basel III.

Mathematically, we start in Chapter 2 with a simple timeless and deterministic set-

ting. We begin by introducing the concept of a bank’s asset portfolios and by assuming

that the proceeds of liquidating a portion of the bank’s asset portfolio is concave and

bounded from above by the frictionless linear Mark-to-Market (MtM) value of the assets

(see Definition 2.4). In addition, we postulate that any liquidity call (cash obligation)

a bank needs to generate in a distress situation is generated by the bank so that the

liquidity costs, i.e., the difference between the MtM value and the actual liquidation

value (see Definition 2.4), are minimized. That means that the liquidity costs term is

the result of a nonlinear, but fortunately convex constrained optimization problem

(see Definition 2.8). After characterizing the optimization problem in Lemma 2.10, the

liquidity cost profile of a bank is defined as the unique function mapping for a given

asset portfolio each non-negative liquidity call to the portfolio’s marginal liquidity costs

(see Definition 2.11). Integrating this function from zero to the liquidity call gives the

optimal liquidity costs.

Equipped with these tools, we turn towards the standard two period risk measure-

ment setting of economic capital and financial risk measure theory after Artzner et al.

(1999). We introduce the concept of asset and liability pairs (balance sheets) and liq-

uidity call functions (see Definition 2.20). The latter maps portfolio pairs to random

nonnegative liquidity calls and is used to represent the funding liquidity risk of banks.

The notions of random liquidity calls, random proceeds, and hence random optimal

liquidity costs, lead to the key concept of liquidity-adjusted risk measures defined

on the vector space of asset and liability pairs or balance sheets under liquidity call

functions (see Definition 2.25). Next, we study the model-free effects of adding, scaling,

and mixing balance sheets which are summarized in Theorem 2.26. In particular, we

show that convexity and positive super-homogeneity of risk measures is preserved in

terms of positions under the liquidity adjustment, given certain moderate conditions

are met, while coherence is not, reflecting the common idea that size does matter. We

also indicate how liquidity cost profiles can be used to determine whether combining

positions is beneficial or harmful. In particular, we show that combining positions

with the same marginal liquidity costs generally leads to an increase of total liquidity

costs. This effect works in opposite direction of the subadditivity of the underlying risk

measure, showing that a merger can create extra risk in the presence of liquidity risk.

Afterwards, we address the liquidity-adjustment of the well-known Euler allocation

principle for risk capital. We show that such an adjustment is possible without losing

the soundness property (see Definition 2.28) that justifies the Euler principle. However,

it is in general not possible to combine soundness with the total allocation property for
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both the numerator and the denominator in liquidity-adjusted RAROC.

Little academic research has been done on incorporating liquidity risk into eco-

nomic capital and RAROC. The recent papers by Jarrow and Protter (2005), Ku (2006),

Acerbi and Scandolo (2008), and Anderson et al. (2010) are among the few papers that

look at the intersection between liquidity risk, capital adequacy, and risk measure

theory and hence share similar objectives with our thesis. Common to all four papers

is the idea that a part of an asset portfolio must be liquidated in illiquid secondary

asset markets and as a result liquidity costs relative to the frictionless MtM are incurred.

Risk measures are consequently defined on the portfolio value less the liquidity costs,

except for Anderson et al. (2010) who choose a different approach. We follow the line

of reasoning of the former papers and we emphasize, similar to Acerbi and Scandolo

(2008), that liquidity risk naturally changes the portfolio value from a linear to a non-

linear function of the portfolio positions.10 Despite the similarities with Acerbi and

Scandolo (2008) and Anderson et al. (2010), there are important differences between

our works. In Acerbi and Scandolo (2008) funding liquidity risk can be interpreted as

exogenous. In contrast, we use the concept of asset and liability pairs to internalize

funding liquidity risk to some degree with the help of liquidity call functions. The latter

maps asset and liability pairs to random liquidity calls that must be met by the bank

on short notice by liquidating part of its asset portfolio without being able to rely on

unsecured borrowing. This is similar to Anderson et al. (2010)’s short-term cash flow

function. By imposing a liquidity call constraint, we can investigate the optimization

problem as well as emphasize Type 2 liquidity risk. Of the above papers, we are the

only one who stress the effects of Type 2 liquidity risk on concepts such as risk diversi-

fication and capital requirements, which turns out to be of importance. In addition,

we also discuss the problem of the allocation of liquidity-adjusted economic capital

and RAROC to business units, which none of the above papers do. For a more detailed

discussion of the related literature we refer the reader to the introduction of Chapter 2.

After introducing the basic liquidity risk formalism and analyzing its properties,

we turn in Chapter 3 towards a detailed illustration of the formalism in the context

of a semi-realistic economic capital model. The goal of the chapter is threefold: 1.)

present a reasonable, albeit stylized, modeling of liquidity risk in conjunction of the

typical risk types of a bank, 2.) illustrate what impact the balance sheet composition

has on liquidity risk, and 3.) illustrate the relevance of the previously derived formal

results. For the second goal, we associate three balance sheet compositions to three

different types of banks commonly found in practice: retail banks, universal banks,

and investment banks. We characterize the bank’s funding risk with the help of a

Bernoulli mixture model, using the bank’s capital losses as the mixing variable, and use

standard marginal risk models for credit, market, and operational risk. We derive the

joint model using a copula approach. Furthermore, we introduce a simple, robust, and

efficient numerical algorithm based on the results in Lemma 2.10 for the computation

10In the classical setting the portfolio value is a nonlinear function of risk factors but a linear function
of the portfolio positions.
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Chapter 1: Introduction

Chapter 4: Extensions
of the framework

Chapter 2: Adjusting EC
and RAROC for liquidity risk

Chapter 3: Illustration of
the framework

Chapter 5: Conclusions

Figure 1.1: Thesis outline.

of the optimal liquidity costs per scenario. While the optimization problem behind

the liquidity cost term is convex and hence readily solvable with standard software

tools, our algorithm is generally more efficient. We show that even our simple but

reasonable implementation of liquidity risk modeling can lead to a significant dete-

rioration of capital requirements and risk-adjusted performance for banks with safe

funding but illiquid assets, exemplified by the retail bank, and banks with liquid assets

but risky funding, exemplified by the investment bank. In addition, we show that the

formal results of Theorem 2.26 are relevant, especially the super-homogeneity result of

liquidity-adjusted risk measures. Bank size and the nonlinear scaling effects of liquidity

risk become very apparent for banks that have to rely on a large amount of fire selling.

In Chapter 4 we briefly discuss some extensions of the basic liquidity risk formalism,

including portfolio dynamics, more complicated proceed functions, and an alternative

risk contribution allocation scheme.

1.4 Thesis outline

The thesis is organized as follows (see Figure 1.1): in Chapter 2 we introduce the basic

liquidity risk formalism, and derive our main mathematical results. In Chapter 3 we

present a detailed illustration of the formalism and the mathematical results in the

context of a semi-realistic economic capital model of a bank, focusing on the impact of

the balance sheet composition on liquidity risk. In addition, we present an algorithm

for the computation of the optimal liquidity costs that can be used for applications

in practice. In Chapter 4 we introduce some extensions to the basic liquidity risk

formalism and discuss their impact on the main results. In Chapter 5 we provide a

summary and point out the implications and limitations of the thesis, as well as suggest
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possible future research directions.
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2
Adjusting EC and RAROC for liquidity

risk

A bank’s liquidity risk lays in the intersection of funding risk and market liquidity
risk. We offer a mathematical framework to make economic capital and RAROC
sensitive to liquidity risk. We introduce the concept of a liquidity cost profile as
a quantification of a bank’s illiquidity at balance sheet level. This leads to the
concept of liquidity-adjusted risk measures defined on the vector space of asset
and liability pairs. We show that convexity and positive super-homogeneity of
risk measures is preserved under the liquidity adjustment, while coherence is not,
reflecting the common idea that size does matter. We indicate how liquidity cost
profiles can be used to determine whether combining positions is beneficial or
harmful. Finally, we address the liquidity-adjustment of the well known Euler
allocation principle. Our framework may be a useful addition to the toolbox of
bank managers and regulators to manage liquidity risk.

2.1 Introduction

In this chapter, we offer a mathematical framework that makes economic capital and

RAROC sensitive to liquidity risk. More specifically, in this chapter we address three

issues:

1. Define a sound formalism to make economic capital and RAROC sensitive to

liquidity risk, capturing the interplay between a bank’s market liquidity risk and

funding liquidity risk.

2. Derive basic properties of liquidity-adjusted risk measures with regard to portfolio

manipulations and lay the bridge to the discussion in the theory of coherent risk
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measures whether subadditivity and positive homogeneity axioms are in conflict

with liquidity risk.

3. Clarify the influence of liquidity risk on the capital allocation problem.

Considerable effort has recently been spent on developing formal models that show

how to optimally trade asset portfolios in illiquid markets. For an entry to this literature,

see for instance Almgren and Chriss (2001); Almgren (2003); Subramanian and Jarrow

(2001); Krokhmal and Uryasev (2007); Engle and Ferstenberg (2007), and Schied and

Schoenborn (2009). While this strand of research is related to our work, these papers

focus on sophisticated (dynamic) trading strategies that distribute orders over time

to find the optimal balance between permanent, temporary price impacts, and price

volatility rather than group level liquidity risk measurement and funding risk.

The recent papers by Jarrow and Protter (2005), Ku (2006), Acerbi and Scandolo

(2008), and Anderson et al. (2010) are among the few papers that look at the intersection

between liquidity risk, capital adequacy, and risk measure theory, and hence share

similar objectives as our paper. Jarrow and Protter (2005) consider the case in which

investors are forced to sell a fraction of their holdings portfolio at some risk manage-

ment horizon instantly and all at once (block sale), incurring liquidity costs relative

to the frictionless fair value /MtM value of the portfolio due to deterministic market

frictions. In their setting standard risk measures can be adjusted in a straightforward

way, leaving the well known coherency axioms (Artzner et al., 1999) in tact. Ku (2006)

considers an investor that should be able to unwind its current position without too

much loss of its MtM value, if it were required to do so (exogenously determined).

The author defines a portfolio as acceptable provided there exists a trading strategy

that produces, under some limitations on market liquidity, a cash-only position with

possibly having positive future cash flows at some fixed (or random) date in the future

that satisfies a convex risk measure constraint. Acerbi and Scandolo (2008) study a

framework with illiquid secondary asset markets and “liquidity policies” that impose

different forms of liquidity constraints on the portfolio, such as being able to generate a

certain amount of cash. The authors stress the difference between values and portfolios.

They define “coherent portfolio risk measures” on the vector space of portfolios and

find that they are convex in portfolios despite liquidity risk. Anderson et al. (2010)

extend the ideas of Acerbi and Scandolo (2008) by generalizing the notion of “liquidity

policies” to portfolio and liquidity constraints. However, the authors offer a different

definition of liquidity-adjusted risk measures. They define the latter as the minimum

amount of cash that needs to be added to the initial portfolio to make it acceptable,

which differs from defining risk measures on the liquidity-adjusted portfolio value as

Acerbi and Scandolo (2008) do it. As a result they arrive at liquidity-adjusted convex

risk measures that are, by construction, “cash invariant”.

Common to all four papers is the idea that a part of an asset portfolio must be liqui-

dated in illiquid secondary asset markets and as a result liquidity costs relative to the

frictionless MtM are incurred. Risk measures are consequently defined on the portfolio

value less the liquidity costs, except for Anderson et al. (2010). We follow the line of
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reasoning of the former papers and also emphasize that liquidity risk naturally changes

the portfolio value from a linear to a nonlinear function of the portfolio positions.1

Despite the similarities with Acerbi and Scandolo (2008) and Anderson et al. (2010),

there are important differences between our works. In Acerbi and Scandolo (2008)

funding risk is for the most part exogenous. In contrast, we use the concept of asset

and liability pairs and we internalize funding risk to some degree with the notion of

liquidity call functions. The latter maps asset and liability pairs to random liquidity calls

that must be met by the bank on short notice by liquidating part of its asset portfolio

without being able to rely on unsecured borrowing (interbank market). This is similar

to Anderson et al. (2010)’s short-term cash flow function. By imposing a liquidity call

constraint we can investigate the optimization problem as well as emphasize Type 2

liquidity risk. Of the above papers, we are the only one who stress the effects of Type 2

liquidity risk on concepts such as risk diversification and capital requirements, which

turns out to be of importance. In addition, we also discuss the problem of the allocation

of liquidity-adjusted economic capital and RAROC to business units, which none of the

above papers do.

The chapter is organized as follows: in Section 2.2 we introduce the basic concept

of optimal liquidity costs. In Section 2.3 we characterize the optimization problem and

define the concept of liquidity cost profiles. In Section 2.4 we define liquidity-adjusted

EC and RAROC on the space of portfolios and discuss some interpretation issues of

using liquidity-adjusted EC to determine a bank’s capital requirements. In Section 2.5

we introduce asset and liability pairs and liquidity call functions. We use these to derive

some basic properties of liquidity-adjusted risk measures defined now on the space

of asset and liability pairs under liquidity call functions. In Section 2.6 we address the

capital allocation problem under liquidity risk. In Section 2.7 we sketch some of the

problems related to calibrating liquidity risk models. In Section 2.8 we illustrate the

main concepts of the chapter in a simulation example. We conclude with a discussion

in Section 2.10.

2.2 Mathematical framework

Consider a market in which N +1 assets or asset classes or business units are available,

indexed by i = 0,1, . . . , N , where i = 0 is reserved for cash (or near-cash).2 Suppose

banks are endowed with an asset portfolio. At this stage, there is no need to specify

whether this reflects the current position of a bank, or a hypothetical future position

under a certain scenario that is considered.

Definition 2.1 Asset portfolio. An asset portfolio p is a N +1 nonnegative real-valued

vector p = (p0, . . . , pN )∈P =RN+1
+ , where p0 denotes the cash position.

1Typically the portfolio value is a nonlinear function of the risk factors but a linear function of the
portfolio positions (see, e.g., Chapter 2 in McNeil et al. (2005)).

2We will use the term asset and business unit interchangeably throughout the text. Our formalism
applies to both interpretations.
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The p i may be interpreted as the number of a particular asset contracts or the amount

of currency invested in that asset (business unit). Now suppose the bank needs to

generate a certain amount α in cash, e.g., from a sudden fund withdrawals, only from

liquidating its assets p . We call this cash obligation a liquidity call. Short-selling assets3

or generating cash from extra unsecured borrowing is not allowed.4 Of course, if it

were allowed, banks would not face a liquidity crisis as they could easily meet α. Note

that one could always interpret α as being the liquidity call that is left after unsecured

funding channels have been exhausted. The most straightforward way to withstand

a liquidity call at level α ∈ R+ is to have the amount available in cash, i.e., to have a

portfolio p ∈ P such that p0 ≥ α. However, while having large amounts of cash at all

times is safe, the opportunity costs usually are prohibitive. As a result, it is reasonable

to assume that the bank needs to liquidate parts of its asset portfolios to meet α.

We first consider, as a reference point, the proceeds of selling assets in a frictionless

market. We refer to these proceeds as the fair value or Marked-to-Market/Marked-to-

Model (MtM) value of a portfolio.5

Definition 2.2 MtM valuation function. Let Vi ≥ 0 for i = 0, . . . , N be the fair asset

prices. The MtM valuation function is a linear function V : P →R+ given by V (p ) :=
p0+

∑N
i=1 p i Vi .

However, we commonly observe market frictions in secondary asset markets, especially

in times of turbulences.6 We formalize market frictions by way of proceed functions.

Definition 2.3 Asset proceed function. An asset proceed function for asset i is a non-

decreasing, continuous concave function G i :R+→R+ that satisfies for all x i ∈R+ and

for all i > 0, G i (x i )≤ x i Vi and G0(x0) = x0. The space of all asset proceed functions is

denoted by G.

Monotonicity and concavity is justified reasonably well by economic intuition and are

not very restrictive. Furthermore, they are in line with theoretical market microstructure

literature (Glosten and Milgrom, 1985; Kyle, 1985), recent limit order book modeling

(Alfonsi et al., 2010), and empirical analysis (Bouchaud, 2009). As fixed transaction

costs are negligible in our context, continuity of the asset proceed functions follows

3We do not consider short positions because we do not think it is relevant for our purpose of liquidity
risk management on group level and would only lead to unnecessary complications. However, extending
our framework is this direction is possible.

4While the assumption of no access to unsecured funding is quite pessimistic, banks have commonly
assumed even before the recent crisis that unsecured borrowing is not available during crisis time in
their liquidity stress analyses (Matz and Neu, 2007). In addition, the stress scenario used under Basel III
for the LCR assumes that a bank’s funding ability is severely impaired. However, more importantly we
have witnessed it happen during the recent Subprime crisis.

5“Marking-to-market” and “fair values” are often used as synonyms. However, fair value is a more
general concept than MtM as it does not depend on the existence of active markets with determinable
market prices as MtM does. Having said that, we will use the term MtM and fair value interchangeably.

6In this paper we take the existence of secondary asset market frictions as given and do not attempt
to explain it from more basic concepts.
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from the assumption of continuity in zero. Note that finite market depth can formally

be represented by constant proceeds beyond some particular transaction size. We

assume that cash is a frictionless asset and has a unit price. We do not formalize the

notion of buying assets. We could, however, extend our framework in this direction (cf.,

Jarrow and Protter, 2005; Acerbi and Scandolo, 2008).7

We assume that the proceeds of liquidating more than one asset at a time is simply

the sum of the individual proceeds.

Definition 2.4 Portfolio proceed function. The portfolio proceed function is a function

G : P→R+ given by G (x ) :=
∑N

i=0 G i (x i ) = x0+
∑N

i=1 G i (x i ).

By taking the sum, we do not allow that liquidating one asset class has an effect on the

proceeds of liquidating another asset class. We do not formalize such cross-effects here

because we believe they would only distract from the main idea without adding con-

ceptual insights. However, we discuss the consequences of allowing them in Chapter 4.

For a treatment of cross-effects we refer the interested reader to Schoenborn (2008).

Comparing the proceeds to the MtM value leads to a natural definition of the

liquidity costs associated with the liquidation of a portfolio.

Definition 2.5 Liquidity cost function. The liquidity cost function is a function C : P→
R+ given by C (x ) :=V (x )−G (x ).

We collect some basic properties of the portfolio proceed function and the liquidity

cost function in the following lemma.

Lemma 2.6. Let G be a portfolio proceed function and C a liquidity cost function. Then

1. both G and C are non-decreasing, continuous, zero in zero, and G (x ),C (x ) ∈
[0, V (x )] for all x ∈P .

2. G is concave, subadditive, and sub-homogenous: G (λx )≤λG (x ) for all λ≥ 1 and

all x ∈P .

3. C is convex, superadditive, and super-homogenous: C (λx )≥ λC (x ) for all λ≥ 1

and all x ∈P .

Proof of Lemma 2.6. It follows directly that G (0) = 0 that G is concave (the nonnegative

sum of concave functions is concave) and that G is non-decreasing. Sub-homogeneity

follows from concavity. For subadditivity consider the case for the asset proceed

function G i : R+ → R+ first. Using sub-homogeneity, we have for a ,b ∈ R+ that

G i (a )+G i (b ) =G i ((a+b ) a
a+b
)+G i ((a+b ) b

a+b
)≥ a

a+b
G i (a+b )+ b

a+b
G i (a+b ) =G i (a+b ).

The result follows because G is simply the sum of individual asset proceed functions.

From Definition 2.5 it follows that C (0) = 0 and that C is convex and nonnegative, hence

non-decreasing. The other claims follow directly.

7The asset proceed function may also be interpreted as the process of repoing asset with a transaction
size dependent haircut. However, for it to make sense in our setting, we need to be willing to accept that
the encountered value loss is a realized loss. Under current accounting standards such a loss is generally
not recognized but we note that these issues are currently under revision by the IASB.
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Denote by Lα the set of all portfolios from which it is possible to generate at least α

cash by liquidating assets without short-selling assets or using unsecured borrowing

facilities.8

Definition 2.7 The liquidity feasibility set. Given a liquidity call α ∈R+ and proceed

functions G i ∈ G for i = 0, 1, . . . , N , the liquidity feasibility set is defined by Lα := {p ∈P |
G (p )≥α}with G as defined in Definition 2.4.

For expository purposes we postpone imposing more structure on α to Section 2.5. For

now it is sufficient to take it as an exogenously given object.

In the following definition, which is very similar to ideas in Acerbi and Scandolo

(2008), we introduce the optimal liquidity cost function which assigns costs for a given

liquidity call to a portfolio. It handles Type 1 (p ∈Lα) and Type 2 (p /∈Lα) liquidity risk

and it is the key concept in our framework.

Definition 2.8 Optimal liquidity cost function. The optimal liquidity cost function for

a given liquidity call α∈R+ is the function C α : P→R+ given by9

C α(p ) :=







inf{C (x ) | 0≤ x ≤ p and G (x )≥α}, for p ∈Lα

V (p ), for p /∈Lα.

It is immediately clear that we are allowed to write min instead of inf because the

domain of the infimum is nonempty and compact and C is continuous. Furthermore,

if the optimal liquidity costs C α(p ) are nonzero, the equality G (x ∗) = αmust hold for

the optimal liquidation strategy x ∗, because otherwise down-scaling (always possible

due to continuity of G ) would yield less costs. In the trivial case where costs are zero,

we can still impose G (x ) =αwithout loss of generality. Hence, we can from now on use

C α(p ) =







min{C (x ) | 0≤ x ≤ p and G (x ) =α}, for p ∈Lα

V (p ), for p /∈Lα.

Note that we are dealing with a convex optimization problem. Hence, any local opti-

mum is a global optimum and the set of all optimal liquidation strategies is a convex

subset of {x ∈P | 0≤ x ≤ p}.10

The intuition behind the definition is reasonably straightforward: the optimization

problem approximates the real life problem a bank would need to solve in case of an

8Readers familiar with Acerbi and Scandolo (2008) should not confuse our Lα with their “cash liquidity
policies”, given by L(α) := {p ∈P | p0 ≥α}.

9We write x ≤ y for x , y ∈Rn if x i ≤ yi for i = 1, . . . , n .
10A standard result of minimizing a convex function over a convex set. Suppose we have for a given

α ∈ R+ and p ∈ P two optimal liquidation strategies x1 and x2, x1 6= x2. As a result, we have that
Cα(p ) =C (x1) =C (x2). Now consider xτ :=τx1+(1−τ)x2 for someτ∈ (0, 1). By convexity of the feasibility
set we know that xτ is feasible as well and using the convexity of C , the fact that C (x1)must be globally
optimal, and the fact that C (x1) =C (x2)we have that C (x1)≤C (xτ)≤τC (x1)+ (1−τ)C (x2) =C (x1), and
hence C (x1) =C (xτ).
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Figure 2.1: Visual illustration of the liquidity-adjusted valuation function V α defined in Defini-
tion 2.9. In particular, the figure demonstrates the workings of the 100% with help of the portfolios
outside of Lα.

idiosyncratic liquidity crisis. Note that we allow, for simplicity, infinite divisibility of

positions in the optimization problem. For the case the bank portfolio is illiquid (Type

2 liquidity risk), i.e., p /∈ Lα, we say that all asset value is lost because default is an

absorbing state. This treatment of illiquid states deviates from Acerbi and Scandolo

(2008) and Anderson et al. (2010) as they set the “costs” to ∞ in case p /∈ Lα. Their

approach is the common way to treat hard constraints in optimization problems. We

choose differently because we believe there are some advantages in mapping the default

by illiquidity to a value loss as will be explained in later sections. Note that the optimal

liquidity costs under a zero liquidity call is zero for all portfolios: (∀p ∈P)C 0(p ) = 0.

Closely related to Definition 2.8 is the concept of the liquidity-adjusted value of a

portfolio:

Definition 2.9 Liquidity-adjusted valuation function. The liquidity-adjusted valua-

tion function for a given α∈R+ is a map V α : P→R+ such that the liquidity-adjusted

value of a p ∈P , given a liquidity call α∈R+, is given by V α(p ) :=V (p )−C α(p ).

In Figure 2.1 we illustrate the map visually. Notice that we do not consider permanent

price impacts as we value the remaining portfolio at the frictionless MtM value. The

idea that the own liquidation behavior can leave a permanent mark on the asset price

is known as permanent price impact and becomes important in situations where

one distributes large orders over time (Almgren and Chriss, 2001; Almgren, 2003)) or

considers contagion of price shocks via MtM accounting (Plantin et al., 2008). We do

not formalize these effects here because we believe they would distract from the main

idea without adding conceptual insights. However, we refer the interested reader to

Chapter 4 for a discussion of their impact on our framework.

Remark 2.2.1. The implied constrained optimal liquidation problem is static and does

not consider timing issues. In reality, generating cash from assets is not instantaneously

as it takes time depending on the market and the asset (class). However, integrating

different liquidation periods for different asset (classes) into the standard static setting

is problematic (see, e.g., p. 41 in McNeil et al., 2005). We refer readers to Brigo and
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Nordio (2010) for a constructive approach. Also, liquidity calls do not arise instanta-

neously but are rather spread over time. While we are aware of these issues, we do not

explicitly formalize them. We can only indirectly include them in our framework by in-

terpreting, e.g., α as a cumulative liquidity call over some time interval. There is a clear

resemblance between our α and the total net cash outflow over 30 days under stress

in the context of the LCR in Basel III. On this issue, we would like to echo Jarrow and

Protter (2005)’s argument in favor of keeping it simple to support model transparency

and robustness on this issue.

Remark 2.2.2. We do not claim that the liquidity-adjusted portfolio value is a suitable

alternative to MtM valuation in the accounting context. The liquidity costs will “live”

entirely in the future as will be made clear in subsequent sections. The reason for this

is that we would have problems with interpreting and specifying cash requirements at

time zero. Also, even if we could get around that, it is unclear, whether it would eliminate

any of the potential disadvantages associated with MtM valuation as discussed, e.g., in

Allen and Carletti (2008).

Remark 2.2.3. It is possible to include without much difficulties also other side con-

straints into the optimization problem in Definition 2.8. Other constraints could extend

the framework to handle non-cash obligations but we believe that cash obligations

remain the most obvious choice in the context of liquidity risk of banks. See, e.g.,

Anderson et al. (2010) for an extension in this direction.

2.3 Liquidity cost profile

In this section we characterize the optimization problem and show how this gives rise

to the concept of a liquidity cost profile of a portfolio. We will use these results in

Section 2.5 for the characterization of the optimal liquidity cost function and liquidity-

adjusted risk measures.

As preparation for the main result, we introduce some notation related to the partial

derivatives of the portfolio proceed function G . From the properties of the asset proceed

functions G i (Definition 2.3) it follows that their left and right derivatives

G ′i (x
−
i ) := lim

h↗0

G i (x i +h)−G i (x i )
h

G ′i (x
+
i ) := lim

h↘0

G i (x i +h)−G i (x i )
h

exist and are both non-decreasing functions, taking values in [0, Vi ] and differ in at

most a countable set of points, exactly, those points where both have a downward jump.

Hence, G i is continuously differentiable almost everywhere and so is the portfolio pro-

ceed function G . Note that by Definition 2.4 we know that the partial derivative G with

respect to the i th position equals the derivative of G i . The following characterization of

optimality is easily obtained from standard variational analysis.

Lemma 2.10. Given an asset portfolio p ∈P , a liquidity call α∈R+, proceed functions
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G i ∈ G for i = 1, . . . , N , and a liquidation strategy x ∈ P generating α cash (cf. Defi-

nition 2.8). Then x is optimal, if and only if there exists a µp (α) ∈ [0,1] such that for

i = 1, . . . , N ,

G ′i (x
−
i )≥µp Vi or x i = 0 (2.1)

G ′i (x
+
i )≤µp Vi or x i = p i . (2.2)

In particular,

G ′i (x i ) =µp Vi (2.3)

for all i with x i ∈ (0, p i ) and G i differentiable in x i . For almost all α∈ (0, V (p )), µp (α) is

unique and Equation 2.3 applies to at least one i where x i ∈ (0, p i ).

Proof of Lemma 2.10. Necessity of (2.1) and (2.2): Let i , j denote a pair of indices for

which x i > 0 and x j < p j (if no such pair exists, either xk = 0 or xk = pk for all but at

most one index k, and necessity of (2.1) and (2.2) is easily verified in these simple cases).

Now consider a variation of x that amounts to exchanging a small amount δ > 0 of

assets i for ε (extra) assets j (changing θ into θ +δe i +δ−εj e i ). Such a variation is

admissible if x i > 0, x j < 1 and if α cash is still generated, so δG ′i (x
−
i )≈ εG ′j (x

+
j ), which

means that

ε=
G ′i (x

−
i )

G ′j (x
+
j )
+h.o.t .

Then x can only be optimal if a (small) variation in this direction is not decreasing the

liquidation costs, i.e., it must hold that ε(Vj −G ′j (x
+
j ))≥δ(Vi −G ′i (x

−
i ))> 0. Substituting

the expression for ε yields that G ′i (x
−
i )/Vi ≥G ′j (x

+
j )/Vj for any such pair i , j . Now define

µ− := min{G ′i (x
−
i )/Vi | i such that x i > 0} and µ+ := max{G ′j (x

−
j )/Vj | j such that x j <

p j }. It follows that µ− ≥µ+, and we can choose (any) µp within or at these bounds. It

is clear that (2.3) follows from (2.1) and (2.2), so this is also a necessary condition for

optimality of x .

To prove sufficiency of (2.1) and (2.2), let µp satisfy these conditions for a given x .

Consider another strategy y with G (y ) = α. For all i with yi ≤ x i , the extra proceeds

are bounded by (yi −x i )µp Vi , while for all i with yi ≤ x i , the reduction in proceeds is

at least (x i − yi )µp Vi . From G (y ) = α =G (x ) it follows that the extra proceeds cancel

against the reductions, implying that Σi (yi −x i )µp Vi ≥ 0, and hence that y is as least as

costly as x . So x is optimal.

Note that (2.3) can also be derived as follows: recall the constraint optimization

problem

min{V (x )−G (x ) |G (x ) =α and x ∈Πp},

where the range Πp denotes the set of all liquidation policies that do not involve short-

selling, which can be parameterized by a vector θ containing the fraction of each asset

used in liquidation, i.e., Πp = {θp | 0≤ θ ≤ 1}. The corresponding Lagrangian function

is given by

Λ(x ,λ) =V (x )−G (x )+λ(α−G (x )),
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where λ denotes the Lagrange multiplier. The first order conditions (FOCs) are

d V (x )
d x i

−
dG (x )

d x i
=λ

dG (x )
d x i

for all i ,

hence for all i ,

λ=
d V (x )

d x i

dG (x )
d x i

−1.

Let Vi denote the fair unit price of asset i , then d V (x )
d x i
=Vi , and we can rewrite the FOCs,

using the notation as introduced above, as follows

µi :=
G ′i (x i )

Vi
=

1

1+λ
=:µ

As discussed earlier G is continuously differentiable, hence it follows immediately

that the conditions are necessary for optimality, and in fact the third equation holds.

Sufficiency follows from the fact that G ′ is non-increasing by assumption.

We can interpret the figure µp (α) as the marginal liquidity proceeds of a portfolio

under a given liquidity call, expressed as amount of cash per liquidated MtM-value. It is

an upper bound for the marginal cash return in liquidating the next bit of cash, µp (α+).
The lemma states that optimal liquidation amounts to using all assets up to one and the

same level of marginal liquidity proceeds µp , if possible; otherwise the asset is either

used completely, if it never reaches that level, or it is not used at all, if its liquidity costs

for arbitrary small volumes is already too high. It turns out to be more convenient to

work with marginal liquidity costs per generated unit of cash, i.e., λp (α) :=
1−µp (α)
µp (α)

. We

refer to this function as the liquidity cost profile of a portfolio.

Definition 2.11 Liquidity cost profile. The liquidity cost profile of portfolio p is the

unique left-continuous function λp : (0,G (p )]→ R+ so that for all α, µp (α) := 1
1+λp (α)

satisfies the conditions in Equation 2.3.

It is easily verified that the optimal liquidation costs of a portfolio p for generating α

cash is given by

C α(p ) =







∫ α

0
λp (s )d s , for p ∈Lα

V (p ), for p /∈Lα.

Example 2.12 Liquidity cost profile. Assume that N = 2 and consider the asset portfo-

lio p = (p0, p1, p2) = (10, 10, 10). Proceed functions take an exponential functional form:

G i (x i ) = (Vi/θi )(1− e−θi x i ), i = 1,2, where θi is a friction parameter and we have that

θ1 >θ2. Given that G ′i (x i ) =Vi e−θi x i , we can show using Lemma 2.10 that the liquidity

cost profile for this example is given by

λp (α) =







0 for 0≤α≤ p0,
bλp (α) =− p0−α

V1/θ1+V2/θ2+p0−α
for p0 <α≤ ᾱ,

λp (α) =− p0+G2(p2)−α
V1/θ1+p0+G2(p2)−α

for ᾱ < α≤G (p ),
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where α=G (p0,θ2p2/θ1,10) = 117.15, which marks the point at which Asset 2 is used

up completely. The optimal liquidity costs are then given by

C α(p ) =



















0 if 0≤α≤ p0
∫ α

p0

bλp (s )d s if p0 <α≤α
∫ α

p0

bλp (s )d s +
∫ α

α
λp (s )d s if α<α≤G (p )

V (p ) if α>G (p ).

Suppose we have the following parameter values: p = (10,10,10), V1 = 10, V2 = 8,θ1 =
0.08,θ2 = 0.04 and α = 130. The optimal liquidity costs for these parameters are

C 130(p ) = 30.82 and the liquidity adjusted value is V 130(p ) = 190− 30.82= 159.18. In

Figure 2.2 we plot the main functions for the example portfolio and different friction

parameter pairings, and illustrate the integral form of the optimal liquidity costs for the

above example parameters. �

Remark 2.3.1. It is easily verified, using Lemma 2.10, that the “common-sense” strat-

egy of liquidating first the most liquid asset, then after its position is exhausted start

liquidating the second most liquid asset, and so on for the whole asset portfolio is gen-

erally not optimal (see Duffie and Ziegler (2003) for an example of its use in a different

context). It is, however, the optimal liquidation strategy for the special case of linear

proceed functions as the partial derivatives are constant. See Example 3.4 on p. 108 in

Chapter 2 for a more detailed discussion.

2.4 Economic capital and RAROC with liquidity risk

In this section we bring the concepts of optimal liquidity costs and liquidity cost profiles

into the standard static risk measurement setting and define liquidity-adjusted EC and

RAROC, as well as discuss some issues surrounding the interpretation of liquidity-

adjusted EC as a capital requirement.

2.4.1 Capital adequacy assessment

Bank managers, supervisors, and debt holders are interested in ensuring the continuity

of a bank and hence avoiding the bank’s insolvency is of major interest to them. As

insolvency occurs when the value of the assets drop below the value of the liabilities, the

bank’s actual capital acts as a buffer against future, unexpected value losses, assuming

that expected losses are covered by margins and provisions. Consequently, comparing

the risks of the bank’s asset portfolio to the bank’s actual amount of loss-absorbing

available capital is crucial. We refer to this process as assessing the capital adequacy of

a bank.

The value of available loss-absorbing capital of the bank depends on who is assess-

ing the adequacy. For instance, debt holders should only take into account the actual

amount of the bank’s loss-absorbing available capital that is junior to their claims.
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Assessing the risk of unexpected value losses of the bank is a difficult task. Usually one

approaches the problem by asking the question what the amount of capital the bank

ought to have today in order to limit the possibility of default (insolvency) within a given

time-frame, assuming the bank’s portfolio composition is fixed. Using the terminology

of Jarrow and Purnanandam (2005) we refer to it as the capital determination problem,

and note that it is related but different from the capital budgeting problem, which deals

with the bank’s problem of choosing the composition of its assets and liabilities so as to

maximize its risk/return trade-off, subject to any regulatory capital requirements.

In practice, the capital determination and capital adequacy assessment procedure

is straightforward. Given a probability distribution for the bank’s profit and loss (P&L)

at the risk management horizon T , one computes the quantile (VaR) at a confidence

level11 and takes the result, say b ∈ (0,∞), as the amount of capital the bank ought to

have today to be considered adequately covered against large unexpected value losses

at time T . Furthermore, if b is smaller or equal than the actual loss-absorbing capital of

the bank today, then the bank passes the capital adequacy test and no corrective actions

are required. If, however, b is larger than the actual capital level of the bank today, the

bank fails the test and has to engage in corrective actions.

Commonly, the regulator’s estimate of what capital the bank ought to have is re-

ferred to as regulatory capital (RC) and the bank’s internal estimate is referred to as

economic capital (EC). EC is an important management control tool used within a

bank. It is not only determined at group level but also allocated to business units, sub-

portfolios, and products. Furthermore, it has now become a standard in the banking

sector to measure performance by a risk-adjusted ratio of return over capital (RAROC),

with (allocated) EC taken as denominator and expected P&L in the numerator. As

mentioned earlier, we will use the term EC instead of RC to abstract from the functional

form of RC after Basel II.

2.4.2 Economic capital and RAROC

Since the publication of Basel I and II banks have put tremendous effort in developing

models for RC and EC. The elementary component of an EC model is a set of scenarios

derived from a stochastic model and/or historical simulation that is often comple-

mented with extra stress scenarios imposed by regulators or risk managers. These

scenarios, together with their probabilities or assigned weights, determine a probability

distribution of the annual P&L. Banks use this distribution to determine the EC corre-

sponding to a quantile at a certain confidence level or more generally the outcome of a

risk measure.

We consider, for simplicity, two moments in time: today denoted by t = 0 and

some risk management horizon denoted by t = T (usually taken to be 1 year). We

assume that a bank’s position today leads to overall P&L at time T , denoted by X . This

11The confidence level is typically related to the bank’s target credit rating in such a way that the
implied PD is in line with historical default rates in the industry.
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models the future P&L as a random variable X at T , where X (ω) represents the profit

(X (ω) > 0) or loss (X (ω) < 0) at time T , if the scenario ω realizes. More formally, fix

a probability space (Ω,F ,P) and denote by H := L1(Ω,F ,P) the space of all integrable

random variables on (Ω,F ).12 We interpret H as the space of all conceivable future P&L

of a bank over the time horizon T . Risk measures are defined as mappings from this

space to the real line: ρ : H→R. In other words, a risk measure maps a given risk X ∈H
to its level of riskiness ρ(X ), expressed as a real number.

In practice, the risk measure of choice for EC is Value at Risk (VaR) at a certain

confidence level, i.e., the quantile, but mathematically any monetary risk measure is an

admissible candidate for determining the EC of a bank.

Definition 2.13 Monetary risk measure. A risk measureρ : H→R is called a monetary

risk measure if ρ(0) = 0 and, in addition, satisfies the following properties:

TA Translational anti-variance:

for all X ∈H and for all e ∈R, ρ(X + e ) =ρ(X )− e .

AM Anti-monotonicity:

for all X , Y ∈H and X ≥ Y , ρ(X )≤ρ(Y ).

Translational anti-variance is important because it is tightly linked to the capital de-

termination idea. Under some mild technical assumptions, one can show that the

outcome of a translational anti-variant risk measure can be interpreted as the mini-

mum capital a bank needs to have zero risk, as specified by the risk measure. To see

this, consider the following result of Artzner et al. (1999) (Proposition 2.2),

ρ(X ) = inf{m ∈R |ρ(X +m )≤ 0} (X ∈H). (2.4)

Equation 2.4 tells us that ρ(X ) is equal to the minimum amount m that needs to

be added to the P&L X at time the time T , i.e., be available in every scenario, so as

to have zero risk (as specified by the risk measure). Now the real number m , when

positive (the typical case),13 can be interpreted as the minimum amount of capital a

bank needs at time T as m “absorbs” potential losses per scenario. Furthermore, as

we assume that capital levels remain unchanged between today and at time T , ρ(X )
determines the minimum amount of capital needed at time zero as well. In that sense it

generalizes the practical capital determination procedure, which relies on VaR because

any translational anti-variant risk measure allows this interpretation. Of course, there

are other, stronger properties than translation anti-variance that we may demand of a

risk measures. We turn towards these properties in Section 2.5.

Before we can properly define the EC of a bank in our setting, we need to clarify the

relationship between a bank’s initial portfolio p ∈P and the bank’s overall P&L variable

X at T . It is standard to assume that there is a linear relationship between the exposure

12In some cases we can work with L0(Ω,F ,P), e.g., when we are dealing with VaR, but for simplicity we
stick with H in this thesis.

13Of course, technically it is possible that m is negative, which is a bit more difficult to interpret in
practical terms.
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p and the individual unit P&L of an asset or business unit X0, . . . , XN , so that the overall

portfolio risk is the sum of individual risks weighted by the exposures. Formally, we can

express this as follows:

X (p ) :=
∑N

i=0
p i X i X i ∈H for i = 0, . . . , N . (2.5)

Note that by definition we have that X (p )∈H. The linearity assumption makes sense

in the typical specifications of market risk (trading book) and credit risk (banking book)

but is not entirely convincing for operational risk because it is not a “position risk”.

While it is reasonable to assume that operational losses increase with position size,

i.e., larger banks have a chance of higher losses, saying that losses scale linearly with

the business unit size is more difficult to justify. However, under the Basic Indicator

Approach and the Standardized Approach of Basel II, capital charges for operational

losses scale linearly with a bank’s overall and business line gross income, respectively.

For simplicity we will assume from now on that linearity holds in the absence of liquidity

risk.

The definition in Equation 3.3 requires some explanation regarding the connection

between p and time. In the subsequent analysis, we simply assume that we do as if

we confront the bank’s current position p with scenarios modeled as occurring at T .

That way the position p is the same today as it is at T . The assumption is simplistic

but standard. A more general and conceptually more satisfying approach would be

to model the bank’s position as a random variable. Such an approach would allow

us to factor in realistic reactions of the bank and bank’s investors to scenarios with

regard to replacing maturing assets and liabilities, portfolio growths, reductions of

exposures, reclassifications out of the Fair Value through Profit and Loss (FVTPL) /
Available-for-sale (AFS) category as seen during the Subprime crisis etc. Unfortunately,

systemically formalizing such behavioral assumptions is difficult and hence we stick to

the simplistic perspective.14

Combining Equation 3.3 with the concept of a monetary risk measure, we arrive at

the formal definition of EC.

Definition 2.14 Economic capital. Given a monetary risk measure ρ and X ∈H, the

economic capital (EC) is a map EC : P→R given by EC(p ) :=ρ(X (p )).15

Note that we do not explicitly refer to the monetary risk measure ρ in the notation of

EC, e.g., by using an index like ECρ(p ). Instead whenever needed we refer to this risk

measure as the underlying (monetary) risk measure.

The portfolio RAROC is defined as the ratio of the expected P&L to the EC.

14At the same time, it should be noted that the current financial regulation allows the use of so
called management intervention strategies in models in the context of market risk and interest rate risk.
However, even these cases the exact specification is difficult and sometimes controversial.

15In practice one usually considers for credit risk the unexpected loss for EC computations, i.e.,
EC(p ) := ρ(X (p )− E [X (p )]), which leads to ρ(X (p ))+ E [X (p )] for monetary risk measures. We do not
consider this case here because it does not change our results and would only increase the notational
burden.
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Definition 2.15 RAROC. Given a monetary risk measureρ and X ∈H, the risk adjusted

return on capital (RAROC) is a map RAROC : P→R given by RAROC(p ) := E [X (p )]
EC(p ) .

2.4.3 Liquidity adjustment

For incorporating liquidity costs into the EC and RAROC machinery, we make the

simplifying assumption that the P&L of the bank without liquidity risk is given by the

fair value change of the asset portfolio:

X (p ) =VT (p )−V0(p ), (2.6)

where VT (p ) = p0+
∑N

i=1 p i Vi ,T is the random MtM value of the portfolio p at time T and

V0(p ) is the initial fair portfolio value. This assumption is simplistic, if taken literally,

because it is difficult to fit loss specifications other than those based on FVTPL into this

setting. For example, the losses of a bank’s loan portfolio are commonly specified as the

actuarial “cash” credit losses over the time interval (0, T ) and not the change in MtM

values of the loans. However, there are some good reasons that justify using the fair

value approach for the computation of the EC as discussed in Klaassen and van Eeghen

(2009) on p. 34. We could adjust our formalism to handle a mix of valuation principles

but it would come at the cost of increasing the notational burden without adding much

insight.16 Using Equation 2.6 simplifies the exposition.

With the P&L defined as in Equation 2.6, it is straightforward to incorporate our

idea of liquidity risk into the EC and RAROC machinery. At time T liquidity problems

in the form of liquidity calls might realize and the bank is forced to liquidate part of

its asset portfolio.17 This extension leads naturally to random optimal liquidity costs

at time T , which we denote by C α
T (p ). The idea is to subtract, per scenarioω ∈Ω, the

optimal liquidity costs from the standard P&L at T :

Xα(p ) :=VT (p )−V0(p )−C α
T (p ) =V α

T (p )−V0(p ) =X (p )−C α
T (p ).

Notice that in a scenario in which the bank cannot meet the liquidity call and hence

defaults (Type 2 liquidity risk), we assume that it incurs a loss equal to its full initial

asset portfolio value: p /∈ Lα(ω) =⇒ Xα(ω) =−V0(p ). Essentially this means that we

view −V0(p ) as an upper bound for the capital losses that can occur over (0, T ). This

upper bound seems natural in the setting of a bank’s EC modeling but in cases this is

not applicable one would need to adjust the treatment of illiquid states.

Formally, the liquidity adjustment requires the specification of the liquidity call as a

nonnegative random variable, i.e., α :Ω→R+. In addition, we also need the random

portfolio proceed function GT or in fact N random asset proceed functions, each taking

values in G, i.e., the measurable functions G i ,T :Ω→ G for all i = 0, 1, . . . , N . Alternatively,

we could directly estimate the liquidity cost profile per scenario (Definition 2.11) to

16The idea would be to distinguish between a bank’s whole asset portfolio and a sub-portfolio of it that
is “available-for-liquidation”, and adjust the definition of the P&L of the whole portfolio accordingly.

17Here again it is useful to think of the liquidity call as a cumulative net cash outflow, rather than an
instant cash need.
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determine the optimal liquidity costs.18

We define the liquidity-adjusted EC as the outcome of a monetary risk measure

applied to the liquidity-adjusted P&L.19

Definition 2.16 Liquidity-adjusted EC. Given a monetary risk measureρ, the liquidity-

adjusted economic capital (L-EC) is a map L-EC : P→R given by L-EC(p ) :=ρ(Xα(p )).

For completeness, the Liquidity-adjusted Value at Risk (L-VaR) of a portfolio is given by

L-VaRβ (p ) :=VaRβ (Xα(p )) = inf{c ∈R |P{−Xα(p )≤ c} ≥β }, (2.7)

where β ∈ (0,1) is the confidence level, usually close to 1. The liquidity-adjusted

analogue to Expected Shortfall of a portfolio, is given by

L-ESβ (p ) := ESβ (Xα(p )) =
1

1−β

∫ 1

β

L-VaRu (p )d u , (2.8)

for Xα(p )∈H. We can proceed in the obvious way to adjust RAROC as well.

Definition 2.17 Liquidity-adjusted RAROC. Given a liquidity-adjusted economic cap-

ital, the liquidity-adjusted RAROC (L-RAROC) is a map L-RAROC : P → R given by

L-RAROC(p ) := E [Xα(p )]
L-EC(p ) =

E [X (p )]−E [CαT (p )]
L-EC(p ) .

Notice the double penalty due to illiquidity: a decrease of the numerator as well as

an increase in the denominator. Also note that in case the EC model assigns positive

probability to default by illiquidity states, L-RAROC takes these states into account at

least in the numerator due to the expectation operator.

2.4.4 Liquidity-adjusted EC and capital determination

The question comes up whether the liquidity-adjusted EC of a portfolio can be inter-

preted as the minimum capital requirement of a bank, i.e., is a solution to the earlier

discussed capital determination problem. Interestingly, Anderson et al. (2010) argue

against the use of ρ(Xα(p )) because it fails to be “cash-invariant” or in our terminology

cash-equity translationally anti-variant (see later results Theorem 2.26). For that reason,

it fails according to them to meet the minimum capital requirement interpretation.

They offer an alternative definition which equates the riskiness of a portfolio to the

minimum amount of cash that needs to be added to the initial portfolio to make the risk

at time T zero.20 By doing this, their liquidity-adjusted risk measure is “cash-invariant”

by construction. However, we disagree with their reasoning because we clearly retain

the minimum capital requirement interpretation for liquidity-adjusted EC as long as

18Note that we assume that proceed functions are completely observable in a scenario at T . Clearly,
this assumption is simplistic because in reality we would not have such a complete knowledge at any
point in time.

19Acerbi and Scandolo (2008) consider ρ(V α
T (p )) instead. As we deal with monetary risk measures this

difference is negligible.
20More formally, Anderson et al. (2010) define the risk of a portfolio, using a slight abuse of notation,

as eρ(Xα(p )) := inf{m ∈R |ρ(Xα(p +m )≤ 0}.
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the underlying risk measure ρ is a monetary risk measure on the value level, which

L-EC is by definition. To see this, notice that Equation 2.4 simply becomes

ρ(Xα(p )) = inf{m ∈R |ρ(Xα(p )+m )≤ 0}, (2.9)

which shows that the approach of Anderson et al. (2010) is not needed to “resolve the

conceptual deficiencies” related to the minimum capital requirement interpretation

with liquidity risk. In fact, we believe that with their definition of liquidity-adjusted

risk measures they lose the link to practice and the capital requirement interpretation.

Of course, the definition used in Anderson et al. (2010) is not meaningless, but they

effectively consider a capital budgeting problem and not the bank’s capital determina-

tion problem anymore. Under the capital budgeting perspective we take the risk of a

portfolio as the minimum quantity invested in any marketable security such that the

original portfolio, along with the modified security, becomes acceptable (cf., Jarrow and

Purnanandam (2005)). Within this context, Anderson et al. (2010) consider the special

case of investing purely into cash. However, following Jarrow and Purnanandam (2005)

this approach is not the supervisory perspective and the capital determination problem

but rather a firm’s capital budgeting perspective. This confusion might be explained

by the misleading use of the terms “cash” and “capital” in the risk measure theory

literature. The two terms are often used interchangeably, which is rather harmless in

the standard setting due to the linearity of MtM valuation function but causes problems

in a liquidity risk formalism where the portfolio value is not a linear function on the

vector space of portfolios anymore. As a result, focusing on “cash-invariance” in the

liquidity risk formalism, like Anderson et al. (2010) do, leads to something different

than the capital determination perspective.

However, there is an actual but different problem with the capital buffer interpre-

tation in our framework despite the fact that Equation 2.9 holds in general. While

it is true that Equation 2.9 must hold to speak of the minimum capital requirement

interpretation of ρ(Xα(p )), it is also necessary that we can interpret, allowing for some

abstractions, Xα(p ) as capital gains and losses in all scenarios. Unfortunately, this does

not hold true in our liquidity risk formalism due to the way we operationalize Type 2

liquidity risk. Recall, that we formalize two types of liquidity risk:

1. Type 1 liquidity risk: scenarios where there is a positive liquidity call at time T

and the bank can generate enough cash to meet it, incurring some nonnegative

liquidity costs that deflate the standard P&L at time: X (ω)−C A
T (ω)with C A

T (ω)<
V0(p ).

2. Type 2 liquidity risk: scenarios where there is a positive liquidity call at time T

and the bank cannot generate enough cash to meet it, hence defaults, incurring a

100% value loss: X (ω)−C A
T (ω) =−V0(p ).

While we technically assign a capital loss of −V0(p ) to scenarios in which the bank

cannot service its liquidity call, it cannot really be interpreted as a capital loss, i.e., it is

just a formal means to treat default states. The problem is best illustrated by a simple

example.
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Example 2.18 Capital requirement interpretation. Consider we have two portfolio

pairs bp and bq with the same asset portfolio but different funding structures, so that

A(bp )< A(bq ). The initial portfolio value is V0(p ) = 190. Consider the following three-state

example:

X (p ) X A(bp ) X A(bq )

ω1,P{ω1}= 0.95 20 20 20

ω2,P{ω2}= 0.04 −5 −5 −5

ω3,P{ω3}= 0.01 −25 −50 −190†

VaR0.05 5 5 5

ES0.05 9 14 42

† Default by illiquidity state, i.e., loss equals −V0(p ).

There are two important things we can observe from the example. The first thing we

notice is that

L-VaR0.05(bp ) = L-VaR0.05(bq ) =VaR0.05(p ),

despite the presence of liquidity risk and the occurrence of default by illiquidity states

for portfolio pair bq but not for bp . Both forms of insensitivity do not occur when we

consider the expected shortfall, as we have that

L-ES0.05(bq )> L-ES0.05(bp )> ES0.05(p ).

Secondly, consider the following two differences:

∆1 := L-ES0.05(bp )−ES0.05(p ) = 5 and∆2 := L-ES0.05(bq )−ES0.05(p ) = 33.

The first difference∆1 can readily be interpreted and justified as an increase in capital

requirement due to liquidity risk because the increase is purely caused by Type 1

liquidity risk. However, the justification of the second difference ∆2 as a necessary

increase in capital requirements is more problematic since it is purely driven by Type

2 liquidity risk and the 100% rule. The minimum amount of capital needed to cover

insolvency risk is 9 but now because of the possibility of default by illiquidity in the

third scenario (ω3) we ask for capital of 42. While Equation 2.9 still applies, it is difficult

to assign a real world meaning to the number 42 because the 100% rule is factored in.�

Where does that lead us? First of all it is useful to realize that the insensitivity of L-VaR

in the previous example is not an accident. It is easily verified that L-VaRβ is insensitive

to the default by illiquidity states whenever

β > PDliq :=P{ω∈Ω | bp /∈Lα(ω)}, (2.10)

due to the 100% rule. On this matter there is a sharp difference between L-VaR and

L-ES, or in fact spectral risk measures of which L-ES is a special case. Whenever we

use a spectral risk measures as the underlying risk measure, we cannot avoid the

fact that illiquid states are taken into account because of the monotonicity of the
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risk-aversion function (see Proposition 3.4 p. 171 in Acerbi, 2004). That means that

whenever the underlying risk measure of L-EC is sensitive to default states by illiquidity

given a probability measure, interpreting the outcome purely as capital requirement is

problematic, despite the fact that Equation 2.9 holds in general.

From a conceptual point of view one can argue that for the above reasons Type 1

liquidity risk but not Type 2 liquidity risk should be included in EC computations. For

instance, Klaassen and van Eeghen (2009) come to such a conclusion on page 44:

We conclude that market liquidity risk in the form of price risk of trading

assets [Type 1 liquidity risk] and liabilities, or in the form of higher funding

costs than expected, should be included in economic capital. Funding

liquidity risk does not correspond to a potential increase in funding costs,

but to the unavailability of funding [Type 2 liquidity risk]. We have argued

that it should not be included in economic capital because it does not

represent a cause for a decline in capital, but rather can be a consequence

of such a decline.

While we agree with their basic line of reasoning, we also believe that penalizing banks

not only for Type 1 liquidity risk but also for Type 2 liquidity risk via capital requirements

(EC) outweighs this conceptual problem. We believe that because capital requirements

and EC play such a prominent role as a management control tool within banks and as a

signaling tool in the financial world, it would be advantageous to incorporate as many

aspects of liquidity risk into it. Also note that an alternative approach, as suggested

by Brunnermeier et al. (2009), to include liquidity risk into capital requirements via

a multiplier applied to the standard capital charge based on the effective mismatch

between the asset maturity and the liability maturity, is far more detached from the

conceptual idea of the capital determination problem.

Apart from conceptual issues of including liquidity risk into capital requirements,

we also have to deal with the practical problem of probabilistic modeling liquidity risk.

As mentioned earlier, there is often the sentiment that “it is difficult to quantify” liquid-

ity risk and hence it should be analyzed predominately with the help of stress scenarios

and not full probability models (p. 6 in BIS (2009)). It is clear that for the application of

our formalism we need probability models for the liquidity risk components and we

believe that there is no fundamental problem to achieve that. We discuss this issue in a

bit more detail later in this chapter, as well as in Chapter 3.

Remark 2.4.1. We should stress that it is not the intention of our treatment of default by

illiquidity and more general our L-EC to be an estimate in any sense of the capital levels

that is needed to prevent funding problems to materialize in any or some scenario in

the first place. It is merely meant as a reasonable treatment of a bank’s liquidity risk.

Remark 2.4.2. In practice, the bank’s probability of default (PD) implied by the EC

model is relevant for the determination of the bank’s credit rating. It is straightforward

to see that in our formalism with liquidity risk there is no change in the intuition. The

implied PD in the standard setting is given by PDX :=P{ω∈Ω | −X (ω)≥ `0}, where `0
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is the actual loss-absorbing capital of the bank. Using the 100% rule we are ensured

that in our formalism the implied PD includes default by insolvency and default by

illiquidity: PDXα :=P{ω∈Ω | −Xα(ω)≥ `0}. It is also easily verified that PDXα ≥ PDX .

Remark 2.4.3. Another way to look at our treatment of default by illiquidity states is

that we exclude, via the 100% rule, scenarios in which a bank can be solvent and illiquid

at the same time, i.e., scenarios of the form X (ω)>−`0 while bp /∈LA(ω).

2.5 Diversification, coherent risk measures, and liquidity risk

In this section, we extend our formalism by asset and liability pairings and liquidity call

functions with the purpose to study the properties of liquidity-adjusted risk measures

under basic portfolio manipulations. In particular, we study the effect of liquidity risk

on the diversification principle of risk. The main results in this section might help

banks interested in applying the idea of L-EC to choose an appropriate underlying

risk measure. In addition, our results should dispel concern about the validity of the

coherency axioms in the presence of liquidity risk.

2.5.1 Portfolio pairs and liquidity call functions

Suppose that the bank’s asset portfolio is funded by a liability portfolio. We assume

that there are M + 1 liabilities or liability classes available in the market, indexed by

j = 0,1, . . . , M , with j = 0 being reserved for equity. Essentially we now assume that a

bank’s exposure is represented by a portfolio pair and not just an asset portfolio.

Definition 2.19 Portfolio pair. A portfolio pair bp is a nonnegative real-valued pair

of vectors consisting of an asset portfolio and a liability portfolio, bp = (p ,`) ∈ bP =
RN+1
+ ×RM+1

+ .

From now on, operations on portfolios must always be specified in terms of pairs. While

formally trivial, we believe it is economically significant because it forces us to think

in terms of asset/liability pairs and the additional risk posed by the funding structure.

In order to link liability portfolios with funding risk we introduce the concept of a

liquidity call functions. This function maps a portfolio pairs bp to a random nonnegative

liquidity call α∈H. We assume that cash funded by equity can be seen as risk-free in

the liquidity risk context, in that it does not produce a liquidity call in any scenario and

has no market liquidity risk. This makes sense as we interpret liquidity calls as sudden

cash obligations in times of stress.

Definition 2.20 Liquidity call function. A liquidity call function A is a measurable

function A : bp 7→ α, with α ∈H a random liquidity call related to bp and we have that

A(0) = 0 and

ETI Equity-cash translation-invariance:

for all bp ∈ bP and for all bq ∈ bP0,0, A(bp + bq ) = A(bp ).
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MON Monotonicity:

for all bp ≥ bq , A(bp )≥ A(bq ).

We denote the space of liquidity call functions by A.

Note that A is a function of bp and not just `. While we associate liquidity calls predomi-

nately with the liabilities of a bank, the general formulations allows us to consider all

forms of liquidity calls. For our main results we will consider some suitable subsets of

A. An important subset is the set of liquidity call functions that are convex per scenario

ω∈Ω:

for all bp , bq ∈ bP and for all θ ∈ [0, 1] A(θ bp +(1−θ )bq )≤ θA(bp )+ (1−θ )A(bq ).

Clearly convexity of A does not give justice to all subtleties involved in funding liquidity

risk, but at least it captures the intuition that diversification is beneficial, which might

be justified by mutually mitigating effects in corresponding cash flow schemes and

diversification effects regarding the funding according to investor type, geography,

instruments, currency and so on.21 Note that convexity of A implies (cf. Lemma 2.6)

that for all bp ∈ bP and for all λ ≥ 1, A(λbp ) ≥ λA(bp ), as well as, for all bp ∈ bP and for all

λ∈ [0, 1], A(λbp )≤λA(bp ).

Also noteworthy is the class of subadditive (and perhaps positively homogenous) A

and the class of linear A. The assumption of subadditivity make sense, if one believes

that adding portfolio pairs can only be beneficial in terms of funding liquidity risk. The

class of linear liquidity call functions might be the most natural for applications in

practice and takes the form of

A(bp ) =
∑N

i=1
p iαi +

∑M

j=1
`jαj ,

where the α’s can be interpreted as the liquidity calls at time T or we could view it as

a cumulative cash need over (0, T ). Notice that the assumption of linear liquidity call

functions would not automatically mean that we can avoid the nonlinear scale effects

in liquidity costs.

Random MtM values, random portfolio proceeds, and random liquidity calls, lead

to random optimal liquidity costs of a portfolio pair, which we denote by C A
T (bp ). In

other words, we simply substitute α with A(bp ). The liquidity-adjusted P&L under a

liquidity call function A ∈A is given by

X A(bp ) :=VT (p )−C A
T (bp )−V0(p ) =V A

T (bp )−V0(p ) =X (p )−C A
T (bp ).

Remark 2.5.1. Our liquidity call function is similar to the short-term cash flow function

in Anderson et al. (2010), which they take to be a non-positive concave function.

21Most banks emphasize the importance of diversifying its funding as a means to manage liquidity
risk (Matz and Neu, 2007).
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2.5.2 Properties of optimal liquidity costs under liquidity call functions

As a preparation for our main results we characterize the optimal liquidity cost function

under a liquidity call function. All results hold per scenarioω∈Ω.

Lemma 2.21. If A is convex, the liquidity feasibility set given by LA := {bp ∈ bP |GT (p )≥
A(bp )} is convex and closed under downscaling but not necessarily closed under upscal-

ing.22

Proof of Lemma 2.21.

• The liquidity acceptability set under a convex liquidity call function A, given by

LA = {bp ∈ bP |GT (p )−A(bp )≥ 0}, is the upper level set of a concave function, which

is convex for any level value (see, e.g., Proposition 2.7 in Rockafellar and Wets

(2004)).

• For τ∈ [0, 1] and bp ∈LA it is easily verified that GT (τbp )≥τGT (bp )≥τA(bp )≥ A(τbp )
by the concavity of GT , convexity of A, and the fact that both are zero in zero.

• Let us find a counterexample to prove the third claim. Consider some convex A ∈
A and a portfolio pair such that GT (p ) = A(bp ) and for all τ> 1, GT (τp ) =GT (p ).
Clearly, bp ∈LA . Now consider upscaling bp byτ. In order forτbp to be in LA , it must

hold that GT (τp ) ≥ A(τbp ). However, it follows from Lemma 2.6 and positively

super-homogeneity of A that GT (τp ) =GT (p )<τGT (p ) =τA(bp )≤ A(τbp ), which

implies that τbp /∈LA .

Some of the results only hold for pairs of portfolio pairs that are either both liquid

or both illiquid almost surely:

M := {(bp , bq )∈ bP | ∀ω∈Ω bp , bq ∈LA(ω) or bp , bq /∈LA(ω)}. (2.11)

We summarize the basic properties of the optimal liquidity costs in the next theorem.

Theorem 2.22.

CONV C A
T is convex on M if A is convex.

SUB I C A
T is subadditive on M if A is subadditive and bp and bq have no non-cash

assets in common: for all (bp , bq ) ∈M such that p i qi = 0 for all i > 0, C A
T (bp +

bq )≤C A
T (bp )+C A

T (bq )

SUB II C A
T is subadditive on LA for portfolios pairs that do not demand liquidity calls

if A is convex: for all bp ∈ LA and all bq ∈ bP such that A(bq ) = 0, C A
T (bp + bq ) ≤

C A
T (bp )

SUP C A
T is superadditive on M if A is linear and if the marginal liquidity costs

coincide:

for all (bp , bq )∈M such that λp ,T =λq ,T , C A
T (bp + bq )≥C A

T (bp )+C A
T (bq )

PSUPH C A
T is positively super-homogenous if A is convex: for all bp ∈ bP and all λ≥ 1,

C A
T (λbp )≥λC A

T (bp )

22It is easily verified that P \LA is closed under upscaling.
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Proof of Theorem 2.22.

CONV Because the claim is restricted to M we have to consider two cases: (a)

bp , bq ∈LA and (b) bp , bq /∈LA . Let bp , bq ∈LA and bpθ := θ bp+(1−θ )bq for θ ∈ [0, 1].
From Lemma 2.21 we know that bpθ ∈ LA . Furthermore, let x ∗1, x ∗2, and x ∗p̂θ
be the optimal liquidation strategies associated with C A

T (bp ), C A
T (bq ), and

C A
T (bpθ ), respectively. Defining x ∗θ := θx ∗1+(1−θ )x ∗2 and using the concavity

of G and the convexity of A, it follows that GT (x ∗θ ) =GT (θx ∗1+(1−θ )x ∗2)≥
θGT (x ∗1)+ (1−θ )GT (x ∗2) = θA(bp )+ (1−θ )A(bq )≥ A(bpθ ) =GT (x ∗p̂θ ). So x ∗θ is a

liquidation strategy that generates sufficient cash (≥ A(bpθ )) at costs below

θC A
T (bp1)+ (1−θ )C A

T (bp1) (by convexity). The result follows.

For the second case, bp and bq /∈LA , we need to consider two possible situa-

tions: (1) bpθ /∈LA and (2) bpθ ∈LA . Both situations are trivial. In situation (1)

we have equality by linearity of V and in situation (2) we have that C A
T (bpθ )≤

VT (θp +(1−θ )q ), which always holds as C A
T (bpθ )∈ [0, VT (θp +(1−θ )q )] by

definition.

SUB I Again we have to consider two cases: (a) bp , bq ∈LA and (b) bp , bq /∈LA . Suppose

x ∗ and s ∗ denote the optimal liquidation strategy for bp , bq ∈LA . Given that

bp and bq have no non-cash assets in common, it follows that GT (x ∗+ s ∗) =
GT (x ∗) +GT (s ∗) = A(bp ) + A(bq ) by definition of G . As we assume that A

is subadditive, it follows that the liquidation strategy x ∗ + s ∗ will always

generate at least the liquidity call A(bp + bq ), hence bp + bq ∈LA , and the result

follows.

For the second case, bp , bq /∈LA , we need to consider two possible situations:

(1) bp + bq /∈ LA and (2) bp + bq ∈ LA . Both situations are trivial. In situation

(1) we have equality by linearity of V and in situation (2) we have that

C A
T (bp + bq ) ≤ VT (p +q ), which always holds as C A

T (bp + bq ) ∈ [0, VT (p +q )] by

definition.

SUB II Given that bp ∈ bP and bq ∈ bP such that A(bq ) = 0, we have that A(bp + bq ) = A(bp ),
hence C A

T (bq ) = 0. It is easily verified that adding bq to bp can never increase

the optimal liquidity costs.

SUP Given that the domain is restricted to M, we need to consider three cases:

(a) bp , bq , bp + bq ∈ LA , (b) bp , bq ∈ LA , bp + bq /∈ LA , and (c) bp , bq , bp + bq /∈ LA . Note

that it easily verified that the case bp , bq /∈LA , bp + bq ∈LA cannot occur due to

linearity of A and subadditivity of G . Case (b) and (c) are trivial. For case (b)

the claim reduces to VT (p+q )≥C A
T (bp )+C A

T (bq )which is always true in general

by definition. For case (c) the claim reduces to VT (p +q ) ≥ VT (p ) +VT (q )
which holds of course with equality by the linearity of V .

For case (a) suppose that r ∗, s ∗, and r̄ ∗ denote the optimal liquidation strat-

egy for bp , bq , bp + bq ∈ LA , generating GT (r ∗) = A(bp ), GT (s ∗) = A(bq ) and by
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linearity of A, GT (r̄ ∗) = A(bp )+A(bq ) cash, respectively. Then

C A
T (bp + bq ) =VT (r̄ ∗)−GT (r̄ ∗)

=VT (r ∗)−GT (r ∗)+VT (s ∗)−GT (s ∗)+VT (r̄ ∗− r ∗− s ∗)

−GT (r̄ ∗)+GT (r ∗)+GT (s ∗)

=C A
T (bp )+C A

T (bq )+VT (r̄ ∗− r ∗− s ∗)−GT (r̄ ∗)+GT (r ∗)+GT (s ∗)

=C A
T (bp )+C A

T (bq )+VT (r̄ ∗− r ∗− s ∗),

where we use in the last step that GT (r̄ ∗) = A(bp + bq ) = GT (r ∗) +GT (s ∗) =
A(bp )+A(bq ). Hence, we need to show that VT (r̄ ∗−r ∗−s ∗) =VT (r̄ ∗)−VT (r ∗+s ∗)≥
0 for λp ,T = λq ,T . Because we have that 0 ≤ r̄ ∗ ≤ p + q , we can find a

decomposition r̄ ∗ = r̄ ∗p + r̄ ∗q such that 0 ≤ r̄ ∗p ≤ p and 0 ≤ r̄ ∗q ≤ q . This

decomposition need not be unique. By subadditivity of G (Lemma 2.6) we

have that GT (r̄ ∗p )+GT (r̄ ∗q )≥GT (r̄ ∗p + r̄ ∗q ) =GT (r ∗)+GT (s ∗) = A(bp )+A(bq ). So

either (i) GT (r̄ ∗p ) ≥ A(bp ) or (ii) GT (r̄ ∗q ) ≥ A(bq ). In case (i), the other case is

entirely similar, define δ :=GT (r̄ ∗p )−A(bp ). Recall that by definition of the

marginal liquidity proceeds, the extra amount δ is liquidated at reduction in

MtM value of at least δµp ,T with µp ,T = 1/(1−λp ,T ). Furthermore, GT (r̄ ∗q )≥
GT (r̄ ∗p + r̄ ∗q )−GT (r̄ ∗p ) = A(bq )− δ, so r̄ ∗q generates at most δ cash less than

s ∗, and again by definition of marginal liquidity proceeds the reduction

in consumed MtM-value is at most δµq ,T with µq ,T = 1/(1−λq ,T ). Clearly,

if µp ,T = µq ,T , the net effect on consumed MtM-value is nonnegative, i.e.,

VT (r̄ ∗− r ∗− s ∗)≥ 0.

PSUPH We have to consider three cases: (1) bp ,λbp ∈ LA , (2) bp ∈ LA ,λbp /∈ LA and

(3) bp /∈ LA . For the first case, we refer the reader to Lemma 2.6. For the

second case, PSUPH follows easily because C A
T (λbp ) = VT (p )≥ λC A

T (bp ). The

third case is straightforward as well, as it follows from Lemma 2.21 that

C A
T (λbp ) =λC A

T (bp ) =λVT (p ).

Convexity shows that blending portfolio pairs has a positive diversification effect on

liquidity costs if the liquidity call function is convex. However, this positive effect only

occurs if we exclude certain distorting effects of Type 2 liquidity risk via M. Positive

super-homogeneity of liquidity costs shows that doubling a portfolio pair generally

leads to more than twice the liquidity costs per scenario. This negative upscaling effect

can mostly be motivated by limited market liquidity. General additivity results in terms

of portfolio pairs cannot be made. There are two opposing effects of liquidity risk with

regard to the liquidation problem: (1) a positive diversification effect of liquidity sources,

and (2) a negative concentration effect of liquidity sources. The diversification effect

says that portfolios pairs may benefit from extra sources of liquidity if another portfolio

pair is added. In that case, extra liquidity sources have a sparing effect that allows the

bank to avoid liquidating less liquid sources at higher costs. SUB I and SUB II represent

cases where the diversification effect dominates. The intuition behind SUB I and SUB

II is straightforward. In the case of SUB I we cannot suffer from the concentration
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effect of liquidity sources (cf., Definition 2.4). However, note that for SUB I we need to

assume that A is subadditive to rule out that the diversification effect is overpowered

by increased liquidity calls. In the case of SUB II funding risk does not increase and

hence adding extra portfolio pairs is never harmful and often beneficial. In contrast,

the negative concentration effect says that common assets (or asset categories) in both

portfolio pairs may lead to liquidation at higher volumes in those assets and hence

higher overall liquidity costs due to the subadditivity of the portfolio proceed functions

(see Lemma 2.6). This element is most prominent if one considers upscaling (PSUPH),

but also for combining portfolio pairs with the same marginal liquidity costs. Notice

that the latter result holds only under linear liquidity call functions because subadditive

A could overpower the concentration effect.

Remark 2.5.2. Adding cash-equity portfolio pairs to a portfolio pair is a special case of

SUB II for which we can find upper and lower bounds for the decrease in the optimal

liquidity costs per scenario. Let the set of all cash-equity portfolio pairs be given by

bP0,0 := {bp ∈ bP |p0 = `0, p i = 0 for i = 1, . . . , N ,`j = 0 for j = 1, . . . , M }.

Then for all bp ∈LA and for all bq ∈ bP0,0 it holds that q0λp (A(bp )−q0)≤C A
T (bp )−C A

T (bp+ bq )≤
q0λp ,T (A(bp )) per scenario. The bound is easily derived as soon as we notice that the

cost reduction is given by C A
T (bp )−C A

T (bp + bq ) =
∫ A(p̂ )

A(p̂ )−q0
λp (s )d s .

We state the properties of the closely related liquidity-adjusted value as well as the

liquidity-adjusted P&L in the following corollary, which follows Theorem 2.22.

Corollary 2.23.

CONC V A
T and X A are concave on M if A is convex.

SUP I V A
T and X A is superadditive on M if A is subadditive and bp and bq have no

non-cash assets in common

SUP II V A
T and X A is superadditive on LA for portfolios pairs that do not demand

liquidity calls if A is convex

SUB V A
T and X A is subadditive on M if A is linear and if the marginal liquidity

costs coincide

PSUBH V A
T and X A is positively sub-homogenous if A is convex

Note that if we write SUP II out we get V A
T (bp + bq )≥V A

T (bp )+VT (q ), which tells us that the

adding a portfolio pair with no funding risk increases the liquidity-adjusted value of

the combined asset portfolio by more than the MtM value of the added asset portfolio

per scenario.

2.5.3 Coherent risk measures and liquidity risk

A popular class of risk measures are coherent risk measures (Artzner et al., 1999) as the

axioms defining the class are widely accepted as being useful and convincing in the

financial context.
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Definition 2.24 Coherent risk measure. A monetary risk measure ρ : H→R is called

a coherent risk measure if it satisfies the following properties:

PH Pos. homogeneity of degree one:

for all X ∈H and all λ≥ 0, ρ(λX ) =λρ(X )

SUB Subadditivity:23

for all X , Y ∈H, ρ(X +Y )≤ρ(X )+ρ(Y )

The coherency axioms produced two main discussions. Firstly, the original authors

showed that VaR, the most widely used risk measure in the financial world, is not

coherent as it fails to be subadditive in general, which violates the intuitive notion

of the diversification principle.24 Secondly and more important to our setting, some

academics argue that the axioms PH and S clash with our intuition reagrding liquidity

risk. The brunt of the criticism can be summarized by the following proposition:

If one doubles an illiquid asset portfolio, the risk becomes more than double

as much, but according to the PH axiom this is not allowed!

Some suggest to generalize the axioms itself (Foellmer and Schied, 2002; Heath and Ku,

2004; Frittelli and Gianin, 2002) by replacing the axioms on subadditivity and positive

homogeneity by the weaker convexity,25 while others (Jarrow and Protter, 2005) retain

the coherent axioms but argued for a liquidity cost adjustment on the value level. We

follow the spirit of the latter approach as we agree with Acerbi and Scandolo (2008)’s

defense of the coherency axioms. The authors rightfully point out that the liquidity risk

argument in favor of loosening the axioms is essentially based on a category mistake

involving a confusion of values, represented by X ∈H, and positions, in our notation

given by p ∈P . The axioms of coherent risk measures can only be interpreted in terms

of values (by AM) as they were always meant to be,26 but the proposition is implicitly

talking about units/positions and not values. Of course, in the linear case we have, by

positive homogeneity of ρ, that

ρ(X (2p )) =ρ(2X (p )) = 2ρ(X (p )),

so that doubling a portfolio leads to a doubling of the P&L and hence a doubling of the

riskiness. But as soon as we move to a nonlinear exposure relationship, such as we have

23Throughout, we assume that the P&L X and Y as random variables are not affected by whether or
not the positions are merged. We do as if only the legal liability construction changes. In reality, merging
or splitting positions / balance sheets may change management, business strategy, cost structure, etc.,
and may thus change the P&L under consideration.

24We refer the interested reader to Example 6.7 on p. 241 in McNeil et al. (2005) for an illustration of
what can go wrong when using VaR in some cases.

25A monetary risk measure ρ : H→ R is called a convex risk measure if for all X , Y ∈ H and for all
λ ∈ [0,1], ρ(λX + (1−λ)Y ) ≤ λρ(X ) + (1−λ)ρ(Y ). It is easily verified that the space of coherent risk
measures is a proper subset of the space of convex risk measures.

26In Artzner et al. (1999) we read: “If position size directly influences risk (for example, if positions are
large enough that the time required to liquidate them depend on their sizes) then we should consider
the consequences of lack of liquidity when computing the future net worth [P&L] of a position. With this
in mind, Axioms S and PH about mappings from random variables into the reals, remain reasonable."
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in our formalism, this result breaks down in general:

ρ(Xα(2p )) 6=ρ(2Xα(p )) = 2ρ(Xα(p )).

However, note that the right hand side still applies and still makes sense.

We conclude that the coherency axioms are not in conflict with basic intuition

about liquidity risk because of the distinction between positions and values. In the next

section, we look into the properties of liquidity-adjusted risk measures under some

basic portfolio manipulations such as addition, blending, and scaling.

2.5.4 Properties of liquidity-adjusted risk measures

Given that we extended our setting by portfolio pairs and liquidity call functions, we

adjust our previous definitions of liquidity-adjusted P&L slightly. In particular, we

pull the actual initial equity position of the bank, denoted by `0, into the definition,

assuming that before the realization of X A , the capital of the bank at time T is equal to

the initial capital:

X
A
(bp ) :=X A(bp )+ `0.

This way `0 acts as a loss buffer, which is in line with the capital adequacy and deter-

mination perspective. For this reason `0 should represent the available loss-absorbing

capital of the bank today. Note that we assume that liabilities only affect the P&L of the

bank indirectly via α and the corresponding liquidity cost term. In reality there clearly

is a more direct impact due to interest rate / asset and liability management risk but we

abstract from it here for simplicity and to isolate the acute liquidity risk effect.27

Next we give the definition of liquidity-adjusted risk measures.

Definition 2.25 Liquidity-adjusted risk measure. Given a liquidity call function A ∈A
and a monetary risk measure ρ, a liquidity-adjusted risk measure is a map ρA : bP→R
such that ρA(bp ) :=ρ(X

A
(bp )) =ρ(X A(bp ))− `0.

Of course the choice of the underlying ρ has important consequences in practice as

well as in theory. While most academics prefer coherent risk measures over VaR because

VaR is not subadditive in general, hence not coherent, VaR is used predominately in

practice (see Remark 2.5.3). In the following theorem we summarize the properties of

liquidity-adjusted risk measures under different assumptions regarding the underlying

risk measure ρ and liquidity call function A.

Theorem 2.26. Given a liquidity-adjusted risk measure ρA for some underlying mone-

tary risk measure ρ and liquidity call function A ∈A. Then

CONV ρA is convex on M if both ρ and A are convex

27Related to this issue is the risk of higher than expected funding costs due to general market disrup-
tions or a decline in the credit rating of the bank. It is a form of market liquidity risk related to capital
markets rather than secondary asset markets. However, some banks already take this dimension of
liquidity risk into account via their interest rate risk treatment.
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PSUPH ρA is positively super-homogeneous if ρ is positively super-homogenous and

A is convex: for all bp ∈ bP and all λ≥ 1, ρA(λbp )≥λρA(bp )

SUB I ρA is subadditive on M if both ρ and A are subadditive and if two portfolios

pairs have no non-cash assets in common: for all bp , bq ∈M such that p i qi = 0

for all i > 0, ρA(bp + bq )≤ρA(bp )+ρA(bq )

SUB II ρA is subadditive on LA for portfolio pairs that do not demand liquidity calls

if ρ is subadditive and A is convex: for all bp ∈ bP and all bq ∈ bP such that

A(bq ) = 0, ρA(bp + bq )≤ρA(bp )+ρ(X (q ))

CTSUB ρA is cash-equity translationally subvariant on M: for all bp ∈M and bq ∈
bP0,0 ⊆M, ρA(bp + bq )≤ρA(bp )−q0

SUP ρA is superadditive on M if ρ is additive, A is linear, and if the marginal

liquidity costs coincide: for all (bp , bq )∈M such that λp ,T =λq ,T , ρA(bp + bq )≥
ρA(bp )+ρA(bq )

AM ρA is anti-monotone: for all bp , bq ∈ bP and X A(bp )≥X A(bq ), ρA(bp )≤ρA(bq ).

Proof of Theorem 2.26. All properties of C A
T used in the proof can be found in Theo-

rem 2.22.

CONV With some minor rewriting and using TA of ρ we have that ρA(θ bp + (1−
θ )bq ) =ρ(V A

T (θ bp+(1−θ )bq ))+θV0(p )+(1−θ )V0(q )+c , where c =−θ`p̂
0 −(1−

θ )`q̂
0 . Proceeding similarly, we have that θρA(p )+(1−θ )ρA(q ) = θρ(V A

T (bp ))+
(1−θ )ρ(V A

T (bq ))+θV0(p )+ (1−θ )V0(q )+ c . From concavity of V A
T and from

anti-monotonicity of ρ we know that ρ(V A
T (θ bp + (1− θ )bq )) ≤ ρ(θV A

T (bp ) +
(1−θ )V A

T (bq )). From convexity of ρ we have that ρ(θV A
T (bp )+ (1−θ )V A

T (bq ))≤
θρ(V A

T (bp ))+ (1−θ )ρ(V A
T (bq )) = θρA(p )+ (1−θ )ρA(q ).

PSUPH For λ≥ 1 and for all bp ∈ bP we have that ρA(λbp ) = ρ(X
A
(λbp )) = ρ(λX (p )−

C A
T (λbp )+λ`0). Furthermore, we have using positive super-homogeneity of

ρ that ρ(λX
A
(bp )) = ρ(λX (p )−λC A

T (bp )+λ`0)≥ λρA(bp ). The result follows

directly from positive super-homogeneity of C A
T (Theorem 2.22) and anti-

monotonicity of ρ.

SUB I From SUB I of C A
T , anti-monotonicity, and subadditivity of ρ we have that

ρA(bp+bq ) =ρ(X
A
(bp+bq ))≤ρ(X A

(bp )+X
A
(bq ))≤ρ(X A

(bp ))+ρ(X
A
(bq )) =ρA(bp )+

ρA(bq )).

SUB II From SUB II of C A
T , anti-monotonicity, and subadditivity of ρ we have that

ρA(bp+bq ) =ρ(X
A
(bp+bq ))≤ρ(X A

(bp )+X
A
(bq ))≤ρ(X A

(bp ))+ρ(X
A
(bq )) =ρA(bp )+

ρA(bq ). But we know that C A
T (bq ) = 0, hence X

A
(bq ) = X (q ) and the result

follows.

CTSUB Suppose bp ∈M, bq ∈ bP0,0 ⊆M. Using translation anti-variance of ρ we have

that

ρA(bp + bq ) =ρ(X (p )+X (q )−C A
T (bp + bq ))− `0−q0

=ρ(X (p )−C A
T (bp + bq ))− `0−q0,
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where use the fact that V0,0 = V0,T , hence X (q ) = 0. Furthermore, we have

that ρA(bp )−q0 =ρ(X (p )−C A
T (bp ))− `0−q0. Now the result follows directly

from SUB II of C A
T (Theorem 2.22) and anti-monotonicity of ρ.

SUP From SUP of C A
T , anti-monotonicity, and additivity of ρ we get ρA(bp + bq ) =

ρ(X
A
(bp + bq ))≥ρ(X A

(bp )+X
A
(bq )) =ρ(X

A
(bp ))+ρ(X

A
(bq )) =ρA(bp )+ρA(bq )).

AM The result follows directly from anti-monotonicity of ρ.

We see that convexity and positive super-homogeneity of risk measures is preserved

under the liquidity adjustment on M, while coherence is not, reflecting the common

idea that size does matter. Convexity shows that even under liquidity risk the concept

of risk diversification survives. Acerbi and Scandolo (2008) have a similar result and

they rightfully emphasize that having convexity as a result rather than an axiom shows

that generalizing coherence to convexity to deal with liquidity risk is not needed at the

level of the underlying risk measure. It is worth mentioning that by Jensen’s inequality

convexity implies that the liquidity-adjusted risk of any convex combination of portfolio

pairs is smaller than the convex combinations of the individual risks: for all bp1, . . . , bpn ∈
M and for all θi ∈ [0,1] such that

∑n
i=1θi = 1, ρA

�
∑n

i=1θi bp i
�

≤
∑n

i=1θiρA(bp i ). Note

that VaR is not convex, hence using VaR as the underlying risk measure leads to a

loss of convexity in positions.28 Positive super-homogeneity confirms the common

intuition (recall the earlier discussion) that the level of riskiness generally increases with

increased position size when liquidity risk is present. Clearly, ρA is super-homogenous

for any positive homogenous underlying risk measure ρ. Hence, VaR and any coherent

risk measure, such as Expected Shortfall and more general spectral risk measures,

inherit this property. A similar result is proven in Acerbi and Scandolo (2008) under

Proposition 5.5.

Interestingly, general additivity in terms of portfolio pairs cannot be derived because

of the opposing liquidity cost effects, discussed earlier (see Theorem 2.22). SUB I, SUB II,

and CTSUP represent special cases where the diversification effect of liquidity sources

dominates and works in the same direction as the subadditivity of ρ. CTSUP says that

adding equity-funded cash initially has a positive effect that goes beyond benefits

of adding an equity buffer. Because of the assumption that V0,0 = V0,T = 1, we can

credit this positive effect purely to a positive liquidity effect. The result follows from

the observation that having extra cash in a scenario at T adds a frictionless sources

of liquidity for the generation of the liquidity call that spares the liquidation of less

liquid assets and hence reduces the liquidity costs (cf., CTSUB of Theorem 2.22), but

only on M. A similar result shows up in Acerbi and Scandolo (2008) as “translationally

subvariance”. The difference to our result is that we need to qualify the claim by saying

that the funding source must be equity.

In contrast, the concentration effect of liquidity sources dominates if one considers

28Under some practically relevant assumptions of the underlying probability distribution, VaR is
subadditive in the tail region (Danielsson et al., 2005). If these conditions apply to the liquidity-adjusted
situation as well, then L-VaR would of course be convex.
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upscaling as reflected in PSUPH but also adding two portfolio pairs that have identical

liquidity cost profiles almost surely, as stated in SUP. Notice, however, that SUP only

holds if the underlying risk measure ρ is additive, which is very restrictive. If ρ would

be subadditive, we would have that

ρA(bp + bq )≥ρ(X A
(bp )+X

A
(bq ))≤ρA(bp )+ρA(bq ),

which leaves the the sign of overall effect of adding the two portfolio pairs ambiguous.

This means that subadditivity of the underlying risk measures is not necessarily pre-

served under the liquidity adjustment, i.e., we can have that ρA(bp + bq )≥ρA(bp )+ρ(bq ),
despite an underlying risk measure that is subadditive. In that case a bank wishing to

take the risk X A(bp )+X (bq ) has the incentive to break up into two separately incorporated

affiliates, one for the risk X A(bp ) and the other for the risk X (bq ), because they would

incur a smaller overall capital requirement of ρA(bp )+ρA(bq ). It is standard to use the

latter situation as a general argument for using subadditive risk measures. We think the

argument is reasonable as long as opposing liquidity risk effects are not present.

The properties CONV, CTSUB, and SUB I above only hold on M. This fact shows that

Type 2 liquidity risk can disturb the workings of the diversification effect. This can lead

to some seemingly unpleasant consequences. Consider we have some portfolio pair

bp ∈ P and an equity-funded cash portfolio bq0,0 ∈ bP0,0 such that (bp , bq ) /∈M. For a risk

measure that is sensitive to default by illiquidity states, it can very well happen that

ρA(bp )≤ ρA(bp + bq0,0). It appears odd at first sight that adding a riskless portfolio pair
bq (no P&L risk, no funding risk, and no market liquidity risk) can actually lead to an

increase in the riskiness. However, we believe this to be sensible as the risk measure

balances the positive effects (cf., CTSUB) of adding the portfolio pair in the non-default

states with the default states in which the added notional cash value is completely lost.

We illustrate the link between diversification, subadditivity, and Type 2 liquidity risk in

the following example.

Example 2.27 Subadditivity, convexity, and liquidity risk. Suppose we have two port-

folio pairs bp , bq ∈ bP that have the same type of assets but different funding structure.

The asset portfolio consists of cash, a liquid asset, and an illiquid asset, i.e., N = 2:

bp = ((p0, p1, p2),`p̂ ) = ((0, 10, 10),`p̂ ) bq = ((q0,q1,q2),`q̂ ) = ((5, 10, 10),`q̂ ).

The initial unit MtM values are V1,0 = 10 and V2,0 = 8, hence V0(p ) = 180 and V0(q ) = 185.

We assume market liquidity is modeled by exponential proceed functions with random

friction parameters θ1,T and θ2,T : G i ,T (x i ) =
Vi ,T

θi ,T
(1− e−θi ,T x i ) for i = 1,2. We assume we

have linear liquidity call function A. Suppose three different scenarios Ω= {ω1,ω2,ω3}
can occur at T . The scenarios and the corresponding probabilities are as follows:

ω1 = (V1,T = 11, V2,T = 9,θ1,T = 0.02,θ2,T = 0.3, A(bp ) = A(bq ) = 0) P{ω1}= 0.95,

ω2 = (V1,T = 9.5, V2,T = 8,θ1,T = 0.04,θ2,T = 0.5, A(bp ) = 20, A(bq ) = 40) P{ω2}= 0.04, and

ω3 = (V1,T = 8.5, V2,T = 7,θ1,T = 0.08,θ2,T = 0.4, A(bp ) = 60, A(bq ) = 70) P{ω3}= 0.01.

The standard P&L X and the liquidity-adjusted P&L X A in each scenario, as well as VaR
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and ES at a 95% confidence interval, are given in the table below.

X (p ) X (q ) X (p +q ) X A(bp ) X A(bq ) X A(bp + bq )

ω1 20 20 40 20 20 40

ω2 −5 −5 −10 −5.97 −8.14 −18.34

ω3 −25 −25 −50 −52.26 −63.30 −365.00

VaR0.95 5 5 10 5.97 8.14 18.34

ES0.95 9 9 18 15.23 19.17 87.67

We can see that L-ES in this example is not subadditive in portfolio pairs, as

L-ES0.95(bp )+L-ES0.95(bq ) = 34.40< L-ES0.95(bp + bq ) = 87.67,

which can be explained by the negative concentration effect of liquidity sources of

assets. What about convexity? Consider the convex combination of the two portfolio

pairs: bwτ = τbp +(1−τ)bq ,τ ∈ [0,1]. Note that by linearity of A, we have that A( bwτ) =
τA(bp )+ (1−τ)A(bq ). On the left of Figure 2.3 we see that the risk surface of L-VaR0.95( bw )
and L-ES0.95( bw ), given the scenarios and probabilities as specified above, is convex for

both risk measures. Now suppose we slightly change the third scenario by increasing the

liquidity call of portfolio bq by 10, i.e., we have αq̂ = 80 instead of 70, and keep everything

else the same. After the slight model change, we see on the right of Figure 2.3 that the

risk surface of L-ES is not convex anymore. The lack of convexity be can explained by

the fact that the model change brought the pair of portfolio pairs outside of M, while

before they were inside. The result is line with Theorem 2.26. Note that the risk surface

of L-VaR is convex on the right-side as well. This fact can be explained by the model

assumptions and the fact that at the chosen confidence level L-VaR is insensitive to the

default by illiquidity states (see Equation 2.10). �

Note that we can recover exactly the coherency axioms, if we assume that liquidity

plays no role in any scenario. Acerbi and Scandolo (2008) refers to this case as the “limit

of vanishing liquidity risk”. Two ways to achieve this limit in our setting is to have (1)

zero liquidity calls almost surely, and/or (2) perfectly liquid assets almost surely. It is

easy to see that in both cases the optimal liquidity costs are zero almost surely and

we are back to the standard linear portfolio value setting ρA(bp ) =ρ(X (p )). For readers

interested in the proofs we refer to Proposition 5.4 in Acerbi and Scandolo (2008). The

two cases nicely illustrate that in our formalism liquidity risk is only relevant in the

intersection between market liquidity risk and funding liquidity risk.

In conclusion, we recommend banks to use a convex underlying risk measure for

liquidity-adjusted risk calculations to ensure convexity in positions. In particular, we

think coherent risk measures, such as Expected Shortfall, are a good choice because of

their useful properties in the limit of vanishing liquidity risk. However, if VaR is used

as the underlying risk measure for other, more practical reasons, then we can at least

be ensured that possible increases in riskiness due to size effects are captured (see

PSUBPH).
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Figure 2.3: Based on Example 2.27, the figure illustrates the risk surfaces for the convex combina-
tion of two portfolio pairs under slightly different models. On the left, we see that the risk surface
is convex and we have that p̂ , q̂ ∈M, while on the right we have that p̂ , q̂ /∈M and hence the
convexity of the risk surface is lost for L-ES (and coincidentally not for L-VaR). The results are in
line with Theorem 2.26.
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Remark 2.5.3. While choosing the “right” class of risk measures is important, in practice

the problem of choosing a specific risk measure from that class remains. Different

risk measures can lead to very different capital requirements, even within the same

class. Unfortunately, we cannot hope to use mathematical arguments to single out

a particular risk measure from a class. In practice financial supervisors and bank

managers typically use VaR at a certain confidence level, despite the fact that it fails to

be coherent, for a number of different reasons (see p. 19 in BIS (2009)). Some of these

are more convincing than others. Undoubtedly, VaR gained popularity in practice due

to its seemingly straightforward intuition as VaR can be phrased in words people are

familiar with (cf., p. 153 in Acerbi (2004)). However, there is sometimes another line

of reasoning presented that favors VaR over other risk measures. In practice, banks

need to fall below a specific PD level to achieve a specific credit rating. With this in

mind, it is sometimes maintained that VaR is a meaningful risk measure to determine

EC but spectral risk measures like ES are not (Klaassen and van Eeghen, 2009, p. 9)

because “it does not indicate how much capital an institution should possess in order

to avoid insolvency with a chosen level of confidence.” However, if we look carefully,

this point is actually not relevant. Clearly, if we assume that VaRβ (p ) = `0, then PDX =
FX (−VaRβ (p )) =β , because VaRβ (p ) = F−1

X (β ). This might be straightforward, but using

a coherent risk measure such as ES does not change anything conceptually, except that

PDX = FX (−ESβ (p )) =β ′, where β ′ ≤β , under the assumption that ESβ (p ) = `0 and ES

exists. While we do not see any conceptually problems with using risk measures other

than VaR, such as ES, for the determination of capital requirements, VaR has some

practical advantages in terms of estimation and robustness. In practice, we have to

face the problem that far into the tail data gets very sparse and using a risk measure

that is very sensitive to the far tail of the loss distribution is problematic. While we

could try to rely on extreme value theory the basic problem still remains. Of course this

problem applies to VaR with a very high confidence level as well, but the problem is

compounded by using ES or more generally spectral risk measures.

2.6 Allocating liquidity-adjusted EC and RAROC to business units

In this section we are concerned with the effects that liquidity risk has on the problem

of decomposing a bank’s overall risk capital and performance measure into a sum of

contributions of the bank’s business units (assets or sub-portfolios).29 We show that

the allocation problem with liquidity risk can be aligned with the existing literature on

capital allocation in the liquidity-free setting, without major changes. However, this

comes at the cost of losing the total allocation property.

29Recall that EC allocation is a not a physical or legal but a virtual allocation, just as EC itself is a virtual
“required" capital to support the risk exposure.
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2.6.1 The capital allocation problem

Given that a bank has specified a probability model for its P&L at time T and chosen a

monetary risk measure as a basis for its capital determination problem, the overall EC

without liquidity risk is given by EC(p ) =ρ(
∑N

i=0 p i X i ). Now suppose that the bank is

interested in decomposing the overall EC into a sum of contributions of their business

units to identify risk concentrations and optimize its balance sheet. Without loss of

generality, we assume for simplicity that the bank’s i th business unit coincides with

p i . The EC required for the i th business unit, if it would not be part of the bank, hence

often called the standalone EC, is with some abuse of notation given by

EC(p i ) := EC(0, . . . , p i , . . . , 0) =ρ(p i X i ).

If the bank uses a subadditive risk measure or if the risk measure is subadditive for the

particular probability model, it is clear that the overall risk capital is less than the sum

of the standalone ECs:

EC(p )≤
∑N

i=0
EC(p i ).

Hence, there is a diversification effect at work and decomposing the bank’s overall EC is

more difficult than simply using the standalone ECs. How should we decompose/al-

locate the overall EC so that it adequately reflects the diversification effect that each

business unit has. The problem of finding sound allocation rules is generally known

under the header of the capital allocation problem.

In practice, (normalized) standalone risk contributions and (normalized) incre-

mental risk contributions, the difference between the total risk with the business unit

and the risk without it (with-without principle), are often used. In contrast, academics

favor what is known as the Euler allocation principle (gradient allocation, marginal

allocation), which takes the partial derivative of the overall portfolio risk with respect

to the business unit scaled by the exposure as the risk contribution. Tasche (2000, 2008)

shows that, under some differentiability assumptions, partial derivatives are the only

risk contributions that provide the right information about the profitability of business

units in some sense. Denault (2001) shows that using the partial derivatives is the only

“fair” allocation scheme for a coherent risk measure with homogenous P&L, using the

theory of nonatomic cooperative game theory. Finally, Kalkbrener (2005) show that the

Euler allocation principle can be derived from a set of axioms.

2.6.2 Soundness and the Euler allocation principle

We want to apply the perspective of Tasche (2000, 2008) to our setting with liquidity risk.

As a preparation, we briefly review the main idea. Tasche looks at the allocation problem

from a portfolio optimization perspective. He argues that in case the allocated RAROC

of a business unit is greater than the portfolio-wide RAROC, increasing the position

of the business unit should improve, at least locally, the overall RAROC. We call this

requirement soundness (Tasche uses the terms suitability and RAROC compatibility).

Let us denote the EC allocated to business unit i by EC(p i | p ) and let the RAROC
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allocated to business unit i be given by

RAROC(p i | p ) :=
p i E [X i ]

EC(p i | p )
.

We can express soundness formally in the liquidity risk-free setting as follows:

Definition 2.28 Soundness. We call EC(p i | p ) sound if for all i = 0, . . . , N

RAROC(p i | p )>RAROC(p ) =⇒ RAROC(p0, . . . , p i +h, . . . , pN )>RAROC(p )

for sufficiently small h 6= 0.

Tasche shows that the only way to achieve soundness in the standard setting is to equate

EC(p i | p ) to the partial derivative of the overall EC with respect to the i th business unit.

Formally, the Euler allocation is given by

ECEuler(p i | p ) := p i EC′i (p ),

with

EC′i (p ) := lim
h↘0

EC(p0, . . . , p i +h, . . . , pN )−EC(p )
h

=
∂ EC

∂ p i
(p ).

If the underlying risk measure ρ is positively homogenous of degree one, it follows

from Euler’s theorem of positive homogenous functions that

EC(p ) =
∑N

i=0
ECEuler(p i | p ). (2.12)

The fact that the allocated risk contributions add up to the overall EC is often referred

to as the total allocation property. As ECEuler(p i | p ) is the only sound allocation method,

we know that

RAROCEuler(p i | p ) :=
E [X i ]

EC′i (p i )
(2.13)

is the only sound definition for RAROC(p i | p ).
We think that soundness has a clear and relevant economic interpretation. In par-

ticular, it meets the criteria suggested by Gruendl and Schmeiser (2007) that whatever

allocation rule one may choose, the properties of this rule should be helpful in reaching

the bank’s goals. Here it is important to realize that there are two different perspectives

in practice on how to use allocated EC and RAROC figures. In some banks allocated EC

and RAROC figures are only used as a decision support tool for the group management,

not the business units themselves. Under this view, business units managers use the

unit’s stand-alone RAROC for themselves, given by

RAROC(p i ) :=
E [X i ]

EC(p i )
,

together with a prescribed hurdle rate. It is argued that this way business unit managers

can focus purely on their core businesses and leave aspects of potential diversification

benefits of their transactions to higher level management, as the latter is deemed to be

more qualified to make such decisions. Consequently, RAROCEuler(p i | p )must only be

seen as a decision-support tool for the bank’s group management. However, there are

other banks that allow business units managers to directly use the allocated RAROC
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figures. Tasche’s concept of soundness nicely fits both perspectives as it is reasonable

to assume that one goal of the business units and the bank’s group management is to

optimize its portfolio, i.e., ask the question which business line should be expanded or

contracted. Note that soundness agrees with the first order condition of the optimiza-

tion problem of maximizing the overall expected liquidity-adjusted P&L subject to a

risk capital upper bound (Hallerbach (2004), Pflug and Roemisch (2007, p. 208)).

Remark 2.6.1. While soundness is a reasonable idea, it should be noted that the straight-

forward way to make capital budgeting decisions for lines of business, with or without

liquidity risk, is to directly evaluate whether a different pricing policy or whether and

to what extent expanding or contracting the business will lead to higher or lower

risk-adjusted profitability of the bank as a whole, taking into account any operational

constraints. Or even more directly the bank management could choose the solution

to a suitable optimization problem. However, we assume here as in most academic

literature that the question is not whether to allocate or not, but rather how it should

be done, if one must.

2.6.3 Soundness, liquidity risk, and the Euler allocation principle

The question is now whether we can simply apply the idea of soundness to our formal-

ism with liquidity risk. While it is possible, it is not entirely straightforward. We can

easily spot some problems just looking at the definition of the portfolio L-RAROC:

L-RAROC(bp ) :=
L-EP(bp )
L-EC(bp )

=
E [X A(bp )]
ρA(bp )

=

∑N
i=1 p i E [X i ]−E [C A

T (bp )]
ρA(bp )

,

where L-EP(bp ) stands for the expected liquidity-adjusted P&L of the portfolio pair bp .

It should be clear that in order to specify the liquidity-adjusted RAROC of a business

unit we also need, in addition to an allocation rule for the denominator ρA(bp ),Ãě a

principle for the allocation of the numerator L-EP(bp ). Without liquidity risk, p i E [X i ]
is taken as the obvious contribution of a business unit to the expected P&L, but with

liquidity risk we do not have a straightforward definition of the P&L of a business unit,

because C A
T is not linear in bp anymore. This brings us to another problem. Because C A

T

is positively super-homogenous (Theorem 2.22), we know that E [C A
T (bp )] and ρA(bp ) are

not positively homogenous in portfolio pairs. Hence, Euler’s theorem does not apply

anymore and the total allocation property (cf., Equation 2.12) for the Euler allocation

principle does not hold in the liquidity-adjusted case. Finally, the notion of a business

units requires some explanation in our setting with liquidity risk. In the standard

setting we considered p i as representing the business unit and hence partial derivatives

make sense. With liquidity risk, however, we take a balance sheet viewpoint and partial

derivatives are less meaningful.

As a preparation for applying the idea of soundness to our formalism, we need

some additional notation and definitions. We start with the definition of a business

unit. Under the balance sheet perspective we define business units as asset and liability

pairs. For a given bp ∈ bP , we assume for simplicity that a business unit is represented by
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the i th asset position p i and a matching liability vector/funding mix `i , assigned by the

group management to the business unit:30

bp i := ((0, . . . , p i , . . . , 0),`i )∈ bP ,

where we require that the sum of the N+1 business units adds up to the whole portfolio

pair, i.e.,
∑N

i=0 bp i = bp . In order to have well-defined directional derivatives we assume

that asset and liability pairs are matched initially, i.e., V0(p ) = L 0(`), where L 0(`) is the

notional value of the liability portfolio at time 0, given by L 0(`) := `0+
∑N

j=1 `j L 0,j , with

L 0,j ≥ 0 for j = 1, . . . , M , representing the notional unit values of the liabilities. A special

case is to set `i
j =

V0,i

V0(p )
`j for j = 0, . . . , M and i = 0, . . . , N , which amounts to assigning to

each business unit the same funding mix. Given our definition of business units, we

could define the liquidity-adjusted standalone EC and RAROC. However, we refrain

from doing that here because we take the view that the type of liquidity risk we consider

is a group’s problem and hence managing it is not a core competency of a business unit.

Furthermore, the issue involves some further difficulties. We refer the interested reader

to Chapter 4 where we discuss the problem in more detail and offer a solution.

In contrast to the partial derivatives in the standard setting, we now consider for a

given bp ∈ bP the directional derivatives in the directions of the i th business unit bp i/p i :

L-RAROC′i (bp ) := lim
h↘0

L-RAROC(bp +h p̂ i

p i
)−L-RAROC(bp )

h
. (2.14)

The directional derivatives of L-EP and L-EC at bp are defined analogously and denoted

by L-EP′i (bp ) and L-EC′i (bp ), respectively. Of course, the directional derivatives are the

dot product of the corresponding gradient and the direction vector of the business unit

bp i/p i .

We denote the expected liquidity-adjusted P&L allocated to business unit bp i , given

that it is part of portfolio pair bp by L-EP(bp i | bp ) and the risk allocated to business unit bp i ,

given that it is part of portfolio pair bp , by L-EC(bp i | bp ). The definition of the allocated

L-RAROC follows:

L-RAROC(bp i | bp ) :=
L-EP(bp i | bp )
L-EC(bp i | bp )

.

Applying the idea of soundness (see Definition 2.28) to the allocated L-RAROC, we call

L-RAROC(p i | bp ) sound if for all i = 0, . . . , N

L-RAROC(bp i | bp )> L-RAROC(bp ) =⇒ L-RAROC(bp +h
p̂ i

p i
)> L-RAROC(bp ) (2.15)

for a sufficiently small h 6= 0. Using L’Hôpital’s rule, we can rewrite the right side of

Equation 2.15 as
L-EP′i (bp )
L-EC′i (bp )

>
E [X A(p )]
L-EC(p )

i = 1, . . . , N ,

30Again, the restrictions to a single p i is not essential but simplifies some notation.
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which gives us the sufficient condition for achieving L-RAROC:

L-RAROC(bp i | bp ) =
L-EP(p i | bp )
L-EC(p i | bp )

=
L-EP′i (bp )
L-EC′i (bp )

. (2.16)

As a result, if we are interested in soundness, we need to comply to Equation 2.16. For

example, if we would like to use the Euler allocation principle for the risk (denominator),

we also need to use it for the numerator. While it appears that using the Euler allocation

principle is also the way to go with liquidity risk, there is the problem that the allocated

parts do not add up to the whole, hence failing the desirable total allocation property.

In particular, the scaling constant ηL-EP, given by

ηL-EP

∑N

i=0
p i L-EP′i (bp ) = L-EP(bp ),

and ηL-EC, given by

ηL-EC

∑N

i=0
p i L-EC′i (bp ) = L-EC(bp ),

are generally not equal to one. The loss of the total allocation property is unfortunate

but we could of course simply consider the normalized versions under a proportional

sharing rule of the residual,31 given by

L-EP(bp i | bp ) := p i L-EP′i (bp )ηL-EP and L-EC(p i | bp ) := p i L-EC′i (bp )ηL-EC. (2.17)

However, note that we cannot simply use the normalized versions of the numerator

and the adjusted denominator for the allocated L-RAROC at the same time and still

expect that soundness holds, because soundness then requires ηL-EP = ηL-EC, but in

almost all cases this does not hold true.

We conclude that Tasche’s notion of soundness can be applied to our formalism

with liquidity risk without major problems. We only need to consider the appropriate

directional derivatives, rather than use the partial derivatives. However, due to the

inhomogeneity of L-EP and L-EC in business units we cannot achieve soundness and

the total allocation property for both L-EP and L-EC at the same time.

Remark 2.6.2. The complications due to liquidity risk are caused by the inhomogeneity

of X A in bp . As it is standard in finance to assume that there is a linear relationship

between exposure and values (see Footnote 10 on p. 8 and Equation 3.3 on p. 67),

which is reasonable for risk types other than liquidity risk, it is not surprising that the

majority of the capital allocation literature has not focused on the inhomogeneous case.

However, Powers (2007) looked into the problem of an insurer interested in allocating

its risk capital for losses that are inhomogeneous in exposures. The author argues

for the use of Aumann-Shapley (AS) values due to its solid axiomatic foundation in

nonatomic cooperative game theory and the fact that the total allocation property holds

also for inhomogeneous losses. In fact Denault (2001) derives AS values as the only

“fair” allocation rule for the capital allocation problem under coherent risk measures.

However, in his case losses are homogenous in exposure and hence the AS values

31Note that it is also possible to share the residual equally among business units and not in proportion
to marginal cost.
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coincide with the Euler contributions. At first sight AS values seem to a good candidate

for our formalism with liquidity risk. However, we believe that Tasche’s notion of

soundness is practically more relevant than the more abstract notion of “fairness” from

which the AS values are derived, and unfortunately the allocated RAROC is not sound

anymore if we use AS values for the numerator and the denominator.

2.7 Liquidity risk model calibration

Despite the simplicity of our framework, banks would still need to model proceed

functions and liquidity call functions in order to apply our ideas. It is beyond the scope

of this thesis to discuss the modeling task in detail, but we would like to point out some

challenges.

The first challenge is to get hold of relevant liquidity data. In order to calibrate

even simple proceed function models, for instance of the exponential form used in

our examples, we would need time series of data of the form (x i ,t ,G i ,t (x i ,t ))nj=1 for

i = 1, . . . , N with x i ,t being the quantity of asset i sold at time t and G i ,t (x i ,t ) being the

proceeds received at time t . However, as we are only interested in stress situations we

need, in addition, to make sure that the data come from a period of market distress.

While the recent Subprime crisis can provide some useful data points, data scarcity

still remains a problem. An option might be to tie the proceeds functions of the bank

to available market liquidity risk indices. For instance, the Bank of England’s market

liquidity index or Fitch’s market liquidity indices on the CDS markets. Formally, we

could assume co-monotonicity between the variations of the liquidity index and the

proceed functions. In addition to the proceed functions, a bank needs to calibrate

a liquidity call model. A potential problem is that each bank would ideally have to

calibrate their models with bank-specific statistical data due to bank-specific factors

such as market presence, crisis communication skills, market confidence etc. However,

many banks did not experience idiosyncratic liquidity shocks in their past, so the

relevant data set is small or worse empty. Of course, if the bank-specific data is not

relevant, banks might extrapolate from the experience of other banks that experienced

funding problems. This approach would be similar to the use of external data for

the modeling of operational risk. In addition to these problems, we should also be

concerned with the ever present issue of relying purely on historical data.

Even if the calibration to statistical liquidity data is possible, the next challenge is

to specify the probabilistic dependence structure between liquidity risk, credit risk,

market risk, and operational risk to complete the liquidity-adjusted EC model. Apart

from ad-hoc approaches, we could imagine that it might prove useful to estimate

a parametric multivariate copula between liquidity risk, market risk, and credit risk

indices, as suggested by Brigo and Nordio (2010) in a different context and apply to

our formalism.32 In Chapter 3 we propose a different approach that avoids the need to

32While copulas have received a lot of attention in academic literature, it should be noted that banks
often prefer to use simpler aggregation methods for the computation of EC due to practical reasons.



2.8 Simulation example � 51

specify the probabilistic dependency between the standard risk types and liquidity risk

separately.

In conclusion, we believe that at this point a solution based on the intelligent

combination of data-driven EC models and expert-driven liquidity stress scenarios

is attractive. In the future, useful statistical liquidity risk models might become more

feasible due to the combined effort of market participants, regulators, and rating

agencies to collect relevant financial data. As we propose the integration of liquidity risk

into EC, we would require a formal incorporation of these liquidity stress scenarios into

existing EC models, which is different from the current practice in the banking world to

have a separate liquidity stress scenario analysis. A very simple approach to incorporate

a particular notion of (liquidity) stress scenarios into the EC model is to consider a finite

mixture between the standard EC model and a set of liquidity stress scenarios. The

intuition is reasonable straightforward: we sample from the standard EC model with

certain probability close to one to get ordinary and “moderately” pessimistic scenarios

and a sample from a finite set of stress scenarios that include liquidity problems. Such

an approach to incorporating stress scenarios into probability models is discussed in

Berkowitz (2000) and Gibson (2001). While this approach to liquidity risk modeling

is very simple, it has several advantages. Primarily it allows banks to think in terms

of stress scenarios that involve not only the standard risk factors of the EC model

but also liquidity risk. Furthermore, as banks are required to perform stress testing

for the standard EC model by regulation anyway (BIS, 2005), banks might be able to

“kill two birds with one stone”. Clearly, the resulting joint scenarios would be very

pessimistic, and could be considered as “perfect storm" scenarios, but liquidity risk

has exactly this character. We do not consider here how a bank comes up with the

scenarios but we point into the direction of Breuer et al. (2009) for some ideas about

the issue. A practical advantage of this modeling approach is that it is easy to sample

realizations from the finite mixture using standard Monte Carlo techniques. Naturally,

the specifications of the probabilities for the stress scenarios in the mixture is a problem

in practice. On could build another (simple) model that allows banks to condition the

stress probabilities on recent realizations of risk factors as is suggested in Berkowitz

(2000) or leave it completely up to experts or regulators.

2.8 Simulation example

Suppose a bank’s asset portfolio consists of p0 units of cash, p1 units of a liquid asset,

and p2 units of an illiquid asset, i.e., N = 2.33 The asset portfolio is funded by `0 units of

equity, `1 units of retail on-demand deposits, `2 units of short-term wholesale funding,

and `3 units of long-term bonds, i.e., M = 3:

bp = ((p0, p1, p2), (`0,`1,`2,`3)) = ((10, 10, 10), (20, 30, 10, 4)),

33We refer the reader to Chapter 3 for a less stylized illustration of our formalism.
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with V1,0 = 10, V2,0 = 8, and (L 0, L 1, L 2, L 3) = (1,1,10,10). It is easily verified that the

initial value of asset portfolio equals the value of the liabilities. For the calculation

of the directional derivatives, we need to specify the matching portfolio pairs of the

business units. For this example, we assign to each business unit the same funding mix

such that the i th business unit is given by

bp i = ((0, . . . , p i , . . . , 0), (τ`0,τ`1,τ`2,τ`3)), with τ :=
p i V0,i

V0(p )
.

We assume that the marginal probability law of the two asset price is the log-normal dis-

tribution. In particular, we have that V1,T ∼ lnN (2.35,0.095) and V2,T ∼ lnN (2.1,0.067)
so that E [V1,T ] = 10.5 and E [V2,T ] = 8.2. Furthermore, we assume for simplicity that

both proceed functions have the exponential form and both have deterministic friction

parameters θ1 = 0.08 and θ2 = 0.1:

G i ,T (x i ) =
Vi ,T

θi
(1− e−θi x i ) i = 1, 2.

We assume that the liquidity call function is linear in liabilities. More specifically,

we assume that there is the possibility of a liquidity crisis with probability κ that

amounts to a (constant) liquidity call given by the risk weighted notional liabilities.

More formally, for a given constant risk weight vector (w1, w2, w3)∈ [0, 1]3 and constant

vector (L 1, L 2, L 3)∈R3 the liquidity call function is

A(bp ) =α=
�∑3

j=1
w j `j L j

�

C ,

where C ∼ Bernoulli(κ) with κ being the probability of the liquidity crisis. We set κ

to 0.01 and use the weighting vector w = (0.5,0.75,0.25) so that α= 100C . Note that

equity does not carry any risk weight. Also note that because A is linear, we have that

A(bp i ) =
p i V0,i

V0(p )
A(bp ) = p i V0,i

V0(p )
100C . We complete the joint probability model by joining

the marginal distributions with a Student’s t copula with 1 degree of freedom and

correlation matrix
∑

=







1 0.6 −0.8
0.6 1 −0.8
−0.8 −0.8 1






.

We use VaR and ES to measure the bank’s riskiness. Furthermore, we use the Euler

allocation principle for the standard case and the liquidity-adjusted setting in line

with soundness. We use VaRβ (p i | p ) and L-VaRβ (bp i | bp ) to denote the risk allocated

to the i th business unit if the underlying risk measure is VaR; the notation for ES is

entirely similar. We approximate the partial and directional derivatives with the central

difference, taking into account the rounding and truncation error (see the Appendix

for the details), except for the ES contributions where use the formula given in Tasche

(2008):

ESβ (p i | p )≈−E [p i bX i | bX (p )≤−VaRβ (bX (p ))],

where bX i is the P&L of the i th business unit and bX (p ) the portfolio P&L under the

“empirical measure”. We apply VaR, ES, L-VaR (Equation 2.7), and L-ES (Equation 2.8) to
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the sampled P&L in the standard way. In Figure 2.4 and Table 2.1 we collect the results

of a simulation run of length 20,000. The first thing we notice is that the inclusion

of liquidity risk increases the portfolio-wide riskiness by 8% for VaR and 58% for ES,

as well as decreases portfolio RAROC by 3% using VaR and by 9% using ES. It should

not be surprising that L-ES is considerably higher than ordinary ES as the optimal

liquidity cost term is for the most part active far out in the tail in our example (see

κ= 0.01). This aspect is also illustrated by the fact that the PD without liquidity risk

(PDX = 0.023) and with liquidity risk (PDX A = 0.024) is about the same. In terms of the

risk contributions it is interesting to see that L-ES(bp0 | bp ) is negative. This result can be

explained by the fact that cash is risk-free and, while it does not generate profit in our

example, it decreases the optimal liquidity costs in all scenarios except those where the

bank defaults due to illiquidity (see the discussion and example after Theorem 2.26). In

this example the positive effects dominate the increased loss in the default states. The

idea of soundness can nicely be illustrated by looking at L-RAROCEuler for the case of

VaR. If we compare the overall liquidity-adjusted performance, given by L-RAROC(bp ) =
0.25, with the allocated performance ratios, given by L-RAROCEuler(bp1 | bp ) = 0.27 and

L-RAROCEuler(bp2 | bp ) = 0.18, we expect, in line with soundness (Equation 2.15), that

increasing the first business unit and decreasing the second a bit would improve the

overall performance. And indeed, we have L-RAROC(bp +h p̂1

p1
) > 0 and L-RAROC(bp +

h p̂2

p2
)< 0 (not shown in Table 2.1). Finally, the example provides an illustration of the

conflict between the total allocation property and soundness. As in (Equation 2.17), we

define the scaling factors such that

ηL-VaR :=
L-VaR0.99(bp )

∑2
i=0 L-VaR0.99(bp i | bp )

ηL-ES :=
L-ES0.99(bp )

∑2
i=0 L-ES0.99(bp i | bp )

ηL-EP :=
L-EP(bp )

∑2
i=0 L-EP(bp i | bp )

.

As expected, we have that ηL-VaR 6=ηL-ES 6=ηL-EP, hence soundness and the total alloca-

tion property for both the numerator and the denominator at the same time cannot be

achieved.

2.9 Discussion

2.9.1 Static versus dynamic framework

Practitioners might argue that our static approach neglects essential dynamic (timing)

elements of liquidity risk. In particular, funding risk cannot be reduced to a single

liquidity call number, as banks face a dynamic multi-period net cash flow balance

that is a complex combination of cash in- and outflows streams arising from its asset

and liability portfolio. In addition, recovery actions of banks facing serious liquidity

problems are more complex and might involve actions of different durations. The

feasibility of these measures are a function of the nature, severity, and duration of

the liquidity shocks, in other words, it is a function of the state of the world and time.

We agree that a dynamic analysis is conceptually more desirable than our simple

static approach, but we would like to emphasize that the costs to produce it can be



54 � Adjusting EC and RAROC for liquidity risk

6
8

10
12

14
16

6
7

8
9

10
11 0 20 40 60 80

100

V
1

,T
V

2
,T

α

(a)
Scatter

p
lo

t

−40
−20

0
20

40
60

80
0

0.005

0.01

0.015

0.02

0.025

0.03

(b
)

H
isto

gram
o

fX
(p
)

−80
−60

−40
−20

0
20

40
60

80
0

0.005

0.01

0.015

0.02

0.025

0.03

(c)
H

isto
gram

o
fX

A(
b
p
)

Figu
re

2.4:A
tth

e
to

p,w
e

see
a

scatter
p

lo
to

fth
e

realizatio
n

s
o

fth
e

assetp
rices

attim
e

T
an

d
th

e
liq

u
id

ity
calls.A

tth
e

b
o

tto
m

,w
e

h
ave

th
e

h
isto

gram
s

o
fth

e
frictio

n
less

an
d

th
e

liq
u

id
ity-ad

ju
sted

P
&

L
w

ith
a

kern
elestim

ate
o

fth
e

d
en

sity
(see

ap
p

en
d

ix
in

C
h

ap
ter

3
fo

r
m

o
re

in
fo

rm
atio

n
).



2.9 Discussion � 55

Risk measurement

VaR0.99(p ) 25.07 ES0.99(p ) 29.74
L-VaR0.99(bp ) 27.13 L-ES0.99(bp ) 46.87

+2.06 +17.13
PDX 0.023 PDX A 0.024

Performance measurement

E [X (p )] 6.97 L-EP(bp ) 6.77

VaR ES

RAROC(p ) 0.28 RAROC(p ) 0.23
L-RAROC(bp ) 0.25 L-RAROC(bp ) 0.14

-0.03 -0.09

Risk allocation†

VaR0.99(p0 | p ) 0 L-VaR0.99(bp0 | bp ) 0
VaR0.99(p1 | p ) 15.65 L-VaR0.99(bp1 | bp ) 17.11
VaR0.99(p2 | p ) 9.42 L-VaR0.99(bp2 | bp ) 10.03

ES0.99(p0 | p ) 0 L-ES0.99(bp0 | bp ) -2.20
ES0.99(p1 | p ) 18.65 L-ES0.99(bp1 | bp ) 42.69
ES0.99(p2 | p ) 11.09 L-ES0.99(bp2 | bp ) 29.62

Performance allocation

p0E [X0] 0 L-EPEuler(bp0 | bp ) 0.03
p1E [X1] 4.96 L-EPEuler(bp1 | bp ) 4.68
p2E [X2] 2.01 L-EPEuler(bp2 | bp ) 1.80

VaR

RAROCEuler(p1 | p ) 0.32 L-RAROCEuler(bp1 | bp ) 0.27
RAROCEuler(p2 | p ) 0.21 L-RAROCEuler(bp2 | bp ) 0.18

ES

RAROCEuler(p1 | p ) 0.27 L-RAROCEuler(bp1 | bp ) 0.11
RAROCEuler(p2 | p ) 0.18 L-RAROCEuler(bp2 | bp ) 0.06

Total allocation property and normalization

L-VaR0.99(bp ) 27.13 L-ES0.99(bp ) 46.87
∑2

i=0 L-VaR0.99(bp i | bp ) 27.14
∑2

i=0 L-ES0.99(bp i | bp ) 70.11
+0.01 +23.24

L-EP(bp ) 6.77 ηL-VaR 0.9996
∑2

i=0 L-EP(bp i | bp ) 6.51 ηL-ES 0.68
- 0.26 ηL-EP 1.04

† We refer the reader to the Appendix for details on how we approximate the derivatives numerically.

Table 2.1: Portfolio-wide EC and RAROC results and business unit allocation results.
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considerable. Formalizing the above mentioned elements can very quickly become

prohibitively complex. Mathematically speaking, modeling all multi-period (stochastic)

cash in- and cash outflows of a bank’s portfolio pair as well as specify multi-period

recovery strategies, would require a multi-period stochastic optimization framework

with a multi-variate stochastic process model that would easily exceed the existing EC

model in complexity. Furthermore, ensuring the time-consistency of risk measures

would be required, adding to the complexity (see, for instance, Artzner et al. (2007) and

Roorda et al. (2005)). In this thesis we have chosen simplicity over completeness in the

hope to illustrate the main ideas. Furthermore, we have argued several times in this

chapter that it is possible to interpret the liquidity call in our framework as a bank’s

short-term cumulative net cash outflow under stress similar to the denominator in the

LCR of Basel III.

2.9.2 Smooth cost term versus binary nature of liquidity risk

Our framework, and in particular, the optimal liquidity costs term, relies on the rele-

vance of the implied optimization problem. We said that the liquidity call α should be

interpreted as conditional on a crisis situation in which case the bank cannot access

short-term unsecured funding and must rely on liquidating parts of its asset port-

folio in illiquid secondary markets. Critics might say that we artificially introduce a

“smooth” liquidity cost term where there is none in practice because under the assumed

circumstances a bank could not hope to survive and would essentially be bankrupt

before it even starts liquidating. The idea might better apply to special investment

vehicles (SIVs). In our formalism we could express this line of reasoning by having

either zero optimal liquidity costs or the bank is in default due to illiquidity: for all

ω ∈Ω, X A(bp ,ω) = X (p ,ω) or X A(bp ,ω) =−V0(p ,ω). First of all, it should be noted that

our formalism can deal with this special case and still produce meaningful L-EC and

L-RAROC figures. However, it is true that under such an assumption the added value of

our formalism would be rather minor. A possible response to the criticism is to stress

that the assumption of no access to short-term unsecured funding should be inter-

preted as a short-term problem because it is clear that a bank cannot survive without

access to unsecured funding over the medium-term. In addition, we can interpret

α as being the liquidity call that is left after unsecured funding channels have been

exhausted, which could be state-dependent. Another argument for the relevance of

our framework is that the idea behind Basel III’s LCR is essentially identical to our line

of reasoning. However, if the sequence of events of a liquidity call and the subsequent

fire selling in illiquid secondary asset markets really is not directly meaningful, we can

still use the formalism as a consistent approach to reward and penalize banks for a

reasonable notion of liquidity risk.
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2.10 Conclusions

It has been the purpose of this paper to make EC and RAROC sensitive to liquidity

risk in a consistent way, derive the basic properties of liquidity-adjusted risk measures,

and address the problem of capital allocation under liquidity risk. We introduced the

concept of optimal liquidity costs and liquidity cost profiles as a quantification of a

bank’s illiquidity at balance sheet level. This lead to the concept of liquidity-adjusted

risk measures defined on the vector space of asset and liability pairs under liquidity

call functions.

In agreement with Key Observation 3 in the introduction, this formalism intrinsi-

cally combines market liquidity risk, reflected by the proceed functions, and funding

liquidity risk, reflected by the liquidity call function. We showed that liquidity-adjusted

risk measures possess reasonable properties under basic portfolio manipulations. In

particular, we could show that convexity and positive super-homogeneity of risk mea-

sures is preserved under the liquidity adjustment, while coherence is not, reflecting

the common idea that size does matter. Nevertheless, we argued that coherence re-

mains a natural assumption at the level of underlying risk measures. Convexity shows

that even under liquidity risk the concept of risk diversification survives. Positive

super-homogeneity confirms the common intuition that the level of riskiness gener-

ally increases with increased position size when liquidity risk is present. We showed

that liquidity cost profiles can be used to determine whether combining positions is

beneficial or harmful. In particular, we have shown that combining positions with the

same marginal liquidity costs generally leads to a increase of total liquidity costs. This

effect works in opposite direction of the subadditivity of the underlying risk measure.

Finally, we addressed the liquidity-adjustment of the well known Euler allocation prin-

ciple. We could show that such an adjustment is possible without losing the soundness

property that justifies the Euler principle. However, it is in general not possible to

combine soundness with the total allocation property for both the numerator and the

denominator in liquidity-adjusted RAROC.

Our results may have implications for financial regulations and banks. Liquidity-

adjusted risk measures could be a useful addition to banking regulation and bank

management, as they capture essential features of a bank’s liquidity risk, can be com-

bined with existing risk management systems, possess reasonable properties under

portfolio manipulations, and lead to an intuitive risk ranking of banks. In fact, our

framework may be seen as a more elaborate and rigorous version of the Liquidity

Coverage Ratio of Basel III (BIS, 2010). Furthermore, combining our framework with

the ideas of mark-to-funding in Brunnermeier et al. (2009) and “CoVaR” in Adrian

and Brunnermeier (2009) may help regulators manage systemic risk, originating from

bank’s individual liquidity risk exposure. Internally, banks could use liquidity-adjusted

Economic Capital and liquidity-adjusted RAROC, as well as the allocation schemes, to

manage their risk-reward profile.

In our analysis the liquidity risk faced by banks has been inherently static: banks
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faced a single liquidity call at some time horizon and had to optimally recover from

it instantaneously. However, dynamic liquidity calls and recovery strategies as well

as feedback effects would be more faithful to the complexity of liquidity risk in prac-

tice. While formalizing these features could quickly become prohibitively complex,

developing a dynamic multi-period setting without succumbing to intractability is

a topic for future research. The concept of random liquidity call functions was cru-

cial in describing the interaction between funding and market liquidity risk. Realistic

modeling of this concept is a critical, yet underdeveloped research topic. Finally, we

think that addressing the link between the allocation of liquidity costs, as presented in

our formalism, and funds transfer pricing frameworks used in practice by banks is an

interesting topic for future research.

Appendix

A. Numerical approximation of the Euler allocations

For the computation of the risk contributions using the Euler allocation method, we

need to find the partial derivatives for the standard case and the directional derivatives

for the case with liquidity risk. Unfortunately, we need to rely on numerical approxima-

tions of the derivatives, because analytical solutions are not available for the liquidity

risk case. While conceptually straightforward, the numerical approximation of the first

derivative is not trivial in practice. Note that for the standard case we can rely on the

results of Tasche (2008) as mentioned in Section 2.8.

Consider the derivative of some differentiable function f , given by

f ′(x ) := lim
h↘0

f (x +h)− f (x )
h

.

The simplest way to approximate the derivative in x numerically is to either use the

forward, backward, or central difference. The forward difference is given by

f̂ ′(x ) =
f (x +h)− f (x )

h
,

the backward difference by

f̂ ′(x ) =
f (x )− f (x −h)

h
,

and the central difference by

f̂ ′(x ) =
f (x +h)− f (x −h)

2h
,

with h > 0 being sufficiently small. Higher order approximations naturally exist but

are not feasible for our purposes as we deal with expensive Monte Carlo simulation.

Using one of the above finite differences as a proxy, we are now facing the problem

of choosing the small change, i.e., h. This choice involves the trade-off between what

is known as the rounding error and the truncation error. A rounding error occurs

whenever we represent an infinite real-number by a finite computer representation of
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that number. It should be clear that not all real numbers can be represented exactly

by a computer in floating point arithmetic. The approximate representation of some

real numbers leads to the rounding error. Nowadays, with the advancement of the

hardware, the rounding error is a problem only in some circumstances. One is that the

rounding error could be compounded through a large number of computations and the

second case involves what is known as the catastrophic cancellation of digits. While the

floating-point difference of nearly equal numbers can be computed without error, such

differencing magnifies the relative importance of the rounding errors already present in

representation of those two numbers. Unfortunately, in numerical differentiation, we

invite catastrophic cancellation since we approximate the derivative by the difference

quotients shown above.

The truncation error stems from the higher terms in the Taylor series expansion, as

we can easily show for the forward difference

f (x +h) =
∞
∑

i=0

f (i )(x )
i !

h i

f (x +h) = f (x )+h f ′(x )+
h2

2
f ′′(ξ)with ξ∈ (x ,x +h)

f ′(x )−
f (x +h)− f (x )

h
=−

h

2
f ′′(ξ)

and the central difference

f ′(x )−
f (x +h)− f (x −h)

2h
=−

h2

6
f ′′′(ξ).

One can drive the optimal value for h that minimizes the rounding and the truncation

error, but we do not discuss the details and refer the interested reader to Quarteroni

et al. (2007) and Press et al. (2007). We use the central difference for all our numerical

differentiation as well as the following h value:

h(x ) = (εm )
1
3 x , (2.18)

where x is the point at which the derivative is to be evaluated and εm is the machine

precision of the floating point arithmetic system, which in our case is 2.2204× 10−16

(output of the built-in Matlab function “eps”, using Matlab 2010a).
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3
Illustration of the framework

In this chapter, we present an illustration of the liquidity risk formalism and
the mathematical results derived in Chapter 2 in the context of a semi-realistic
economic capital model, focusing on the impact of the balance sheet composition
on liquidity risk. We show that even a simple but reasonable implementation of
liquidity risk, based on a Bernoulli Mixture model, leads to non-trivial results. In
particular, we show that liquidity risk can lead to a significant deterioration of
capital requirements and risk-adjusted performance for banks with safe funding
but illiquid assets, due to Type 2 liquidity risk, as well as banks with liquid assets
but risky funding, due to Type 1 liquidity risk.

3.1 Introduction

In Chapter 2 we presented a mathematical framework to adjust EC and RAROC for a

notion of liquidity risk. Here, our goal is to illustrate this framework by analyzing the

impact of liquidity risk within the context of a realistic EC model of a bank, focusing on

the sensitivity of liquidity-adjusted EC and RAROC to the asset and liability composition.

We proceed as follows:

1. Specify typical balance sheet compositions for three types of banks: 1. retail

banks, 2. universal banks, and 3, investment banks.

2. Introduce reasonable marginal risk models for market, credit, and operational

risk of a bank.

3. Propose reasonable marginal models for market liquidity risk (proceed functions)

and funding liquidity risk (liquidity call function).

4. Aggregate the marginal risks into an overall EC model via a suitable copula.
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5. Compute L-EC and L-RAROC as described in Chapter 2 for the three bank types

and investigate its similarities and differences.

6. Analyze the impact of the bank size on L-EC and L-RAROC.

The chapter is organized as follows: In Section 3.3 we describe the basic setting, in-

cluding the main assumptions and the necessary formal preliminaries. In Section 3.2

we introduce the notion of a bank’s portfolio composition and discuss the three bank

types. In Section 3.4 we discuss how we model the market, credit, and operational

risk of the banks. We then introduce some basic marginal probability models for the

liquidity risk components (proceed functions and liquidity call function) in Section 3.5,

as well as, illustrate the different liquidity risk characteristics of the three bank types

by comparing the liquidity cost profiles as a function of the liquidity call. Afterwards

in Section 3.6, we turn to the problem of aggregating the marginal risk models to the

overall EC model with the help of a copula. Subsequently in Section 3.7, we present

and discuss the results of the simulation. We conclude in Section 3.8 with a discussion

about some of the implications we can drive from the illustration. Some technical

details are left to the Appendix.

3.2 Portfolio weights, bank size, and bank types

For the illustration of the formalism we consider three generic types of banks: (1) a

retail bank characterized by a large loan book and predominately retail deposit funding,

(2) a universal bank characterized by a diversified mix of asset and liability types, and

(3) an investment bank characterized by a large trading portfolio and predominately

short-term whole-sale funding. We assume for simplicity that the most important

difference between the three bank types are the portfolio weights. The portfolio weights

of a bank is an important variable in our analysis and refers to fraction of the total

money invested in the different asset and liability categories. In particular, on the asset

side we consider three categories: (1) a liquidity portfolio (LP), (2) a trading book (TB),1

and (3) a loan (banking) book (LB). On the liability side we consider we four different

categories: (1) equity, (2) retail on-demand deposits, (3) short-term wholesale funding,

and (4) long-term funding. We abstract from “other assets” and off-balance sheet items.

We assign the following portfolio weights with the three bank types:

Retail bank

Liquidity pf 15% Equity 5%

Loan book 70% Deposits 60%

Trading book 15% Short-term 20%

Long-term 15%

100% 100%

Universal bank

Liquidity pf 15% Equity 5%

Loan book 45% Deposits 45%

Trading book 40% Short-term 35%

Long-term 15%

100% 100%

1By the trading book we mean all positions held intentionally for short-term profit-taking. It is
the bank’s proprietary trading position and not the positions arising from client servicing and market
making.
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Investment bank

Liquidity pf 10% Equity 8%

Loan book 15% Deposits 5%

Trading book 75% Short-term 67%

Long-term 20%

100% 100%

While it is reasonable to assume that the three bank types differ in overall size expressed

as total assets, we first consider for simplicity that all three bank types have the size,

to keep the analysis more streamlined. Note that the overall bank size is an important

variable, when liquidity risk is present, as we have shown in Chapter 2. We will later

on analyze the impact of bank size in the context of this illustration. We assume that

all banks have total assets worth € 500bn. Given the overall bank size, we have the

following balance sheets in terms of money invested and expressed in the notations

introduced below:

Retail bank

V lp
0 (p

lp) € 75bn `0 € 25bn

V lb
0 (p

lb) € 350bn Ldep
0 (`

dep) € 300bn

V tb
0 (p

tb) € 75bn Lst
0 (`

st) € 100bn

Llt
0(`

lt) € 75bn

€ 500bn € 500bn

Universal bank

V lp
0 (p

lp) € 75bn `0 € 25bn

V lb
0 (p

lb) € 225bn Ldep
0 (`

dep) € 225bn

V tb
0 (p

tb) € 200bn Lst
0 (`

st) € 175bn

Llt
0(`

lt) € 75bn

€ 500bn € 500bn

Investment bank

V lp
0 (p

lp) € 50bn `0 € 40bn

V lb
0 (p

lb) € 75bn Ldep
0 (`

dep) € 25bn

V tb
0 (p

tb) € 375bn Lst
0 (`

st) € 335bn

Llt
0(`

lt) € 100bn

€ 500bn € 500bn

More formally, we assume as in Chapter 2 that a bank’s position is represented by a

asset/liability pair (portfolio pair) bp = (p ,`)∈ bP . We assume that a bank’s asset portfolio

p ∈P , expressed as units of contracts, consists of (1) a liquidity portfolio (cash/cash

equivalents and very liquid assets), (2) a trading book, and (3) a loan (banking) book:

p = (p lp, p lb, p tb)∈P =RN+1
+

with p lp = (p0, p lp
1 , . . . , p lp

n 1) ∈ R
n 1+1
+ , p lb = (p lb

1 , . . . , p lb
n 2
) ∈ Rn 2

+ , and p tb = (p tb
1 , . . . , p tb

n 3
) ∈

Rn 3
+ , so that n 1+n 2+n 3 =N . Each asset position has a corresponding unit price/value,

e.g., the initial value of one unit of the i th asset in the loan book is denoted by V lb
i ,0 ≥ 0.

We refer to the initial value of (or money invested in) the liquidity portfolio, the trading

book, and the loan book by V lp
0 (p lp), V tb

0 (p tb), and V lb
0 (p lb), respectively. We have that

V lp
0 (p lp) := p0+

∑n 1

i=1 p lp
i V lp

i . The others are defined analogously. The initial value of the

whole asset portfolio is then given by

V0(p ) :=V lp
0 (p

lp)+V tb
0 (p

tb)+V lb
0 (p

lb).
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The asset portfolio weights are given by

φlp :=
V lp

0 (p lp)
V0(p )

φlb :=
V lb

0 (p lb)
V0(p )

φtb :=
V tb

0 (p tb)
V0(p )

.

We assume that the bank’s liability portfolio consists of (1) equity, (2) retail on-demand

deposits, (3) short-term wholesale funding, and (4) long-term funding:

`= (`0,`dep,`st,`l t )∈RM+1
+ ,

with `0 ∈R+, `dep = (`dep
1 , . . . ,`dep

m1 ) ∈R
m1
+ , `st = (`st

1 , . . . ,`st
m2
) ∈Rm2

+ , and `lt = (`lt
1 , . . . ,`lt

m3
) ∈

Rm3
+ so that m1+m2+m3 =M . Similar to the asset side, we assume that each liability

position has an initial exposure per unit, which corresponds to the notional value per

unit of the liability, e.g, the initial notional of the j th deposit is denoted by Ldep
j ≥ 0.

We refer to the initial notional value of the deposits, the short-term funding, and

the long-term funding by Ldep
0 (`dep), Lst

0 (`st), and Llt
0(`lt), respectively. We have that

Ldep
0 (`dep) :=

∑m1

j=1 `
dep
j Ldep

j . The others are defined analogously. The initial notional

value of the whole liability portfolio is then given by

L 0(`) := `0+ Ldep
0 (`

dep)+ Lst
0 (`

st)+ Llt
0(`

lt).

We assume that the initial value of asset portfolio equals the value of the liabilities:

V0(p ) = L 0(`). The portfolio weights of the liabilities are given by

φequity :=
`0

L 0(`)
φdep :=

Ldep
0 (`dep)
L 0(`)

φst :=
Lst

0 (`st)
L 0(`)

φlt :=
Llt

0(`lt)
L 0(`)

.

As a result the portfolio weights of a bank are given by

φ = ((φlp,φlb,φtb), (φequity,φdep,φst,φlt))∈ [0, 1]7,

and the portfolio weights of the three bank types discussed above are then given by

φret := ((15%, 70%, 15%), (5%, 60%, 20%, 15%))

φuni := ((15%, 45%, 40%), (5%, 45%, 35%, 15%))

φinv := ((10%, 15%, 75%), (8%, 5%, 67%, 20%)).

We will explain the position sizes of the various categories in the following sections

because they are related to the way we model the uncertainty.

3.3 Setting

3.3.1 Static risk measurement setup

For the computation of the riskiness we need to specify the profit and loss (P&L)

distribution for each bank. We adopt the same basic setting as in Chapter 2 with

only slight changes. We consider two moments in time: today denoted by t = 0 and

some risk management horizon denoted by t = T , which we take to be 1 year. We

assume that a bank’s position today leads to overall P&L at time T , denoted by X . This

models the future P&L as a random variable X at T , where X (ω) represents the profit
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(X (ω) > 0) or loss (X (ω) < 0) at time T , if the scenario ω realizes. More formally, fix

a probability space (Ω,F ,P) and denote by H := L1(Ω,F ,P) the space of all integrable

random variables on (Ω,F ). We interpret H as the space of all conceivable future P&L of

a bank over the time horizon T . Risk measures are defined as mappings from this space

to the real line: ρ : H→R. More specifically, we focus in this chapter on the monetary

risk measures VaR and Expected Shortfall: for all X ∈H
VaRβ (X ) := inf{c ∈R |P{−X ≤ c } ≥β }, (3.1)

and

ESβ (X ) :=
1

1−β

∫ 1

β

VaRu (X )d u . (3.2)

As explained in Chapter 2 we assume that there is a linear relationship between the

exposure and the individual P&L of the different books, except for the liquidity cost

term and operational losses. The linearity assumption makes sense in the typical

specifications of market risk (trading book) and credit risk (banking book) but is not

entirely convincing for operational risk because it is not a “position risk”.2 While it is

reasonable to assume that operational losses increase with position size, i.e., larger

banks have a chance of higher losses, saying that losses scale linearly with the business

unit size is not convincing. For simplicity we assume in our analysis that operational

losses are independent of the position. For the nonlinear character of the liquidity

cost term we refer the reader to Chapter 2. Furthermore, we do as if we confront the

bank’s current position (bp ∈ bP) with scenarios modeled as occurring at T . That way

the position is the same today as it is at T . The assumption is simplistic but standard.

We define the overall P&L of a bank without liquidity risk as the sum of the P&L of the

different books:

X (bp ) :=X lp(p lp)+X lb(p lb)+X tb(p tb)− LOp, (3.3)

where LOp stands for the cumulative operational losses over the period (0, T ]. Further-

more, we have (the others are defined analogously) that X lp(p lp) :=
∑n 1

i=1 p lp
i X lp

i , with

X lp
i ∈H for all i . In addition, we assume that LOp ∈H which means that X (bp )∈H. We

do not model ALM risk consistent with the setting in Chapter 2.

Remark 3.3.1. In this chapter we use a confidence level of 99.99% for the computation

of VaR and ES. However, in practice some banks use a confidence level of 99.9999%

instead for the computation of economic capital.

3.3.2 Liquidity risk adjustment

Following Chapter 2, we assume that at time T liquidity problems in the form of liquidity

calls might realize and the bank is forced to liquidate part of its asset portfolio. This

extension leads naturally to random optimal liquidity costs at time T , which we denote

by C A
T (bp ). The idea is to subtract, per scenarioω∈Ω, the liquidity costs incurred from

2However, as mentioned earlier under the Basic Indicator Approach and the Standardized Approach
of Basel II, capital charges scale linearly with a bank’s overall and business line gross income, respectively.
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generating the liquidity call A(bp ) =α from the standard P&L at T :3

X A(bp ) :=X (bp )−C A
T (bp ). (3.4)

Notice that in a scenario in which the bank cannot meet the liquidity call and hence

defaults (Type 2 liquidity risk), we assume that it incurs a loss equal to its full initial asset

portfolio value: bp /∈ LA(ω) =⇒ X A(ω) = −V0(p ). Essentially this means that we view

−V0(p ) as an upper bound for the capital losses that can occur over (0, T ). Formally, the

liquidity adjustment requires the specification of the liquidity call function A : bp 7→α.

In addition, we also need N random asset proceed functions, each taking values in G,

i.e., the measurable functions G i ,T : Ω→ G for all i . We now turn to the modeling of

the P&L of the asset categories and afterwards we discuss ways to model liquidity risk

components.

3.4 Modeling market, credit, and operational risk

3.4.1 Liquidity portfolio

We assume that the liquidity portfolio consists of cash and a government bond (default-

free zero-coupon bond) with maturity T = 10.4 We refer to the cash position by p lp
0 and

the bond position by p lp
1 so that p lp = (p lp

0 , p lp
1 ) for all three bank types. For simplicity,

we assume that cash does not earn any interest.5 While we assume that government

bonds are free of risk, as is standard, the price of the bonds is not constant due to

volatile interest rates. For modeling the price changes of the bonds, we assume that

the interest rate follows a mean-reverting stochastic process as introduced in Vasicek

(1977), which is commonly called a Vasicek process.6 More formally, we denote the

price of a bond at time t with maturity Ti by B (t , Ti ). The interest rate follows a Vasicek

process:

d rt = a (b − rt )d t +σr d Wt ,

where b is the equilibrium value that the rate reverts to in the long-run with speed a ,

σr is the instantaneous volatility, and d Wt is the increment of a Wiener process. Given

that the interest rate follows a Vasicek process, the price of a bond with a unit notional

becomes (see González et al. (2003) for the details)

B (t , Ti ) = e mt−n t rt

with

n t :=
1− e−a (T−t )

a

and

m t :=
(n t −T + t )(a 2b − σ2

r

2
)

a 2
−
σ2

r n 2
t

4a
.

3For the definition of the optimal liquidity costs we refer the reader to Chapter 2.
4Note that the maturity is beyond the risk measurement horizon of T = 1 year.
5We could easily change that, so that the value of the cash account at time T would be p lp

0 e rT T .
6Not to be confused with the Vasicek credit risk model.
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b a r0 T σr

0.05 0.5 0.04 10 0.13

Table 3.1: Parameters used for the Vasicek interest rate process in the simulation.

We assume that the notional of the bond is € 1,000,000 and hence we have that

V lp
1,0 = 106 B (0,10) = 804,400. One can show that the log of the bond price is normally

distributed:

ln Bi (t , Ti )∼N
�

m t −n t (b +(r0−b )e−a t ),
σ2

r n 2
t

2a
(1− e−2a t )

�

.

The price of the bond at time T = 1 is then given by V lp
1,T = 106 B (T, T1) = 106 B (1,10).

We assume for simplicity that the MtM changes of the liquidity portfolio goes through

the bank’s P&L account and hence increase/decrease the bank’s capital. Note that this

assumption may not entirely be in line with current accounting convention where

often only realized P&L are registered, e.g., upon the sale of the bonds. However, as

discussed in the previous chapter taking an economic perspective and using the fair

value approach rather than taking the accounting perspective is reasonable in the EC

context. Thus, the P&L of the liquidity portfolio is given by

X lp(p lp) = p lp
1 (V

lp
1,T −V lp

1,0) = 106p lp
1 (B (1, 10)− B (0, 10)).

It is convenient to express the P&L as a fraction of the initial capital, i.e.,

X
lp
(p lp) :=

V lp
1,T −V lp

1,0

`0
.

We assume that 10% of the money invested according to the portfolio weightφlp in the

liquidity portfolio is put into cash (p lp
0 ), while the rest is invested in the government

bond position (p lp
1 ) so that

p lp
0 =

0.1φlpV0(p )

V lp
0,0

=φlp50 bln

and

p lp
1 =

0.9φlpV0(p )

V lp
1,0

=
450, 000

B (0, 10)
φlp.

The latter changes with the portfolio weights, given that we keep the model fixed. The

descriptive statistics and the histogram of the marginal P&L distribution of the liquidity

portfolio for the three bank types are presented in Figure 3.1 and Figure 3.2.

3.4.2 Loan book and credit risk

We assume that the loan book of each bank consists of loans belonging to one of

five categories of credit worthiness. Generally, these categories can be interpreted as

internal or externally assigned credit ratings. We use a mixture model to describe the

credit risk for each of the categories. In a mixture model the default risk of the obligor
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VaR0.99 4.21%
ES0.99 5.17%

RAROCVaR 56.14%
RAROCES 45.77%
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Figure 3.1: Descriptive statistics (left) and histogram with a kernel density estimate overlay (see
Appendix) of the distribution of the liquidity portfolio P&L divided by the initial capital for the
retail and universal bank.

is assumed to depend on a set of common, usually observable, risk factors, which

are taken to be random variables. Given a realization of the risk factors, defaults of

individual obligors are taken as independent. As a result, the dependence between

defaults is purely driven by the dependence of the common risk factors. McNeil et al.

(2005) show that the standard credit risk model used for regulatory capital is a special

case of the mixture model class discussed here.

We assume each loan j ∈ {1, . . . , n 2} has a position size of p lb
j and notional size of

V lb
j ,0, so that V0(p lb) =

∑n 2

j=1 p lb
j V lb

j ,0. The credit risk for the bank of loan j is that the obligor

defaults between (0, T ]. Suppose that the Bernoulli random variable Yj stands for the

binary event of default happening (“1") or not (“0") for loan j , i.e., Yj :Ω→{0,1}. The

recovery amount per unit of the loan j is given by V lb
j ,0φj , φj ∈ (0,1]. We assume for

simplicity that φj is deterministic and the same for all j , hence we can write φj =φ.

The random credit loss of loan j is then given by

LCr
j := (1−φ)V lb

j ,0Yj .

Now suppose that all n 2 loans can uniquely be assigned to k different homogenous

groups of loans representing, e.g., rating classes according to internal or external

classification, with n 2 > k and r = 1, . . . , k indexing the categories. Let us write p lb
r

for the number of loans in category r . The loss per category r is then given by

LCr
r (p

lb
r ) :=

p lb
r
∑

u=1

LCr
u .

The total losses over the period (0, T ] of the loan book is then the sum of losses of all

categories:

LCr(p lb) :=
k
∑

r=1

LCr
r (p

lb
r ). (3.5)
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VaR0.99 1.76%
ES0.99 2.15%

RAROCVaR 56.14%
RAROCES 45.77%
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Figure 3.2: Descriptive statistics (left) and histogram with a kernel density estimate overlay (see
Appendix) of the distribution of the liquidity portfolio P&L divided by the initial capital for the
investment bank. Note that the only difference between the investment and the other two banks
is the amount of initial capital.

In order to proceed, we need to specify the joint distribution of the indicator variables

Y . In our opinion, the mixture model class popular in credit risk modeling is a good

candidate. In particular, we consider Bernoulli mixture models:

Definition 3.1 Bernoulli mixture model (McNeil et al., 2005). Given some random

vector Z = (Z1, . . . ,Zn )′ taking values inRn , the random vector Y = (Y1, . . . , Ym )′ follows

a Bernoulli mixture model with factor vector Z , if there are functions qi : Rn → [0,1]
for 1 ≤ i ≤m , such that conditional on Z the indicator Y is a vector of independent

Bernoulli random variables with P(Yi = 1 |Z = z ) =qi (z ). For y = (y1, . . . , ym )′ ∈ {0,1}m

we have

P(Y = y |Z = z ) =
∏m

j=1
qj (z )y j (1−qj (z ))1−y j .

Let us write M r for the (random) number of defaults (default counts) in the category r

over the time interval (0, T ]. We can write the Bernoulli mixture model as a binomial

mixture model so that the default counts M 1, . . . , M r are independent and the condi-

tional distribution is binomial, i.e., M r |Z = z ∼B(p lb
r ,qr (z )), where p lb

r is the number

of loans in category r . One way to specify the functions qr (z ) is to use generalized linear

mixed models (GLMMs). Suppose we have a vector of deterministic covariates wr ∈Re ,

consisting of characteristics of the obligor such as industry membership, geographic

region, a regression vector vr ∈Re , an intercept parameter µr ∈R, and a scaling vector

σr ≥ 0, then a model for the conditional default probability is

qr (z ) = h(µr +v ′r wr +σ′rZ ), (3.6)

where h : R → (0,1) is a strictly increasing link function. Typical examples for link

functions are the standard normal distribution function (probit link) and the logistic

distribution function (logit link).

For simplicity, we use the model and estimated parameters in McNeil et al. (2005)
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on page 381-382. More specifically, we consider a single-factor Bernoulli mixture model

with a random effect representing the “state of the economy”, where the conditional

default probability of category r is given by

qr (z ) = Φ(µr +Z ), (3.7)

with Φ being the standard normal distribution function and Z ∼ N (0,σ2). McNeil

et al. (2005) estimate the model from Standard&Poor default count data for the five

rating (k = 5) categories A to CCC. We reproduce the estimation parameter of McNeil

et al. (2005) in Table 3.2. The maximum likelihood estimates of the standard deviation

(scaling parameter) σ is 0.24. As p lb
r stands for the number of loans in category r we

have, e.g., that M 1 |Z = z ∼B(p lb
r ,Φ(−3.43+Z )). For simplicity we assume that all loans

have the same notional value V lb
0 of€ 500,000 and the recovery rate φ is 40% so that

the overall losses of the loan book are given by

LCr(p lb) =
k
∑

r=1

(1−φ)V lb
0 M r = 300, 000

k
∑

r=1

M r .

As we are interested in the P&L of the bank and not only the losses, we assume that the

bank earns the expected losses plus 0.4% on the money invested. As a result the P&L of

the loan book are given by7

X (p lb) = E [LCr(p lb)]+0.004V lb
0 − LCr(p lb)

We again express the P&L as a fraction of the initial capital, i.e.,

X
lb
(p lb) :=

X lb(p lb)
`0

.

We assume that the money invested according to the portfolio weight φlb is equally

distributed over the five loan categories:

p lb
1 V lb

0
∑5

r=1 p lb
r V lb

0,r

= . . .=
p lb

5 V lb
0

∑5
r=1 p lb

r V lb
0,r

=
1

5

so that

p lb
r =

1

5

∑5
r=1 p lb

r V lb
0,r

V lb
0

=
1

5

φlbV0(p )
V lb

0

=
1

5

φlb500 bln

500, 000
= 200, 000φlb for r = 1, . . . , 5.

The descriptive statistics and the histogram of the marginal P&L distribution of the loan

book for the three bank types are presented in Figure 3.3, Figure 3.4, and Figure 3.5.

Remark 3.4.1. While the simulation of the credit risk losses is rather straightforward,

we need to sample from the binomial distribution with a very large number of trials

(number of loans per category). Technically, this is no problem but doing this directly

is computationally very expensive. Fortunately, we can use a normal approximation for

our case, based on de Moivre-Laplace theorem. For the details we refer the reader to

the Appendix.

7Alternatively, a bottom-up approach would require the specification of the bank’s stipulated gain per
loan or loan category if it is repaid regularly.
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Parameter A BBB BB B CCC

µr −3.43 −2.92 −2.40 −1.69 −0.84
πr 0.0004 0.0023 0.0097 0.0503 0.2078

Table 3.2: Reproduction of Table 8.8 on page 382 in McNeil et al. (2005): Maximum likelihood
estimates for a one-factor Bernoulli mixture model fitted to historical default count data from
Standard&Poor and the implied unconditional default probabilities πr .

VaR0.99 51.35%
ES0.99 62.68%

RAROCVaR 10.91%
RAROCES 8.93%
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Figure 3.3: Descriptive statistics (left) and histogram with a kernel density estimate overlay (see
Appendix) of the distribution of the loan portfolio P&L divided by the initial capital of the retail
bank.

3.4.3 Trading book and market risk

The P&L of the trading book over (0, T ) is given by the fair value change of the book:

X tb(p tb) :=V tb
T (p

tb)−V tb
0 (p

tb),

so that the P&L as a fraction of the initial capital is given by

X
tb
(p tb) :=

X tb(p tb)
`0

.

For simplicity, we use a reduced-form approach for modeling the trading book. More

specifically, we assume that n 3 = 1 so that we can write V tb
T (p tb) = p tbV tb

T . We model the

fair value of the trading book at time T as a log-normal distribution: VT ∼ lnN (µtb,σtb)
with µtb,σtb ≥ 0 so that the expected return on capital, i.e., E [X

tb
(p tb)] is 3%. As before,

the position size p tb for each bank depends on the portfolio weights. For simplicity, we

assume that the initial value for the trading position is 1, i.e., V tb
0 = 1, so that the money

invested according to the portfolio weights is given by

p tb =φtbV0(p ) =φtb500 bln.

The descriptive statistics and the histogram of the marginal P&L distribution of the

trading book for the three bank types are presented in Figure 3.6, Figure 3.7, and

Figure 3.8.
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VaR0.99 32.89%
ES0.99 39.98%

RAROCVaR 10.95%
RAROCES 9.00%
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Figure 3.4: Descriptive statistics (left) and histogram with a kernel density estimate overlay
(see Appendix) of the distribution of the loan portfolio P&L divided by the initial capital of the
universal bank.

3.4.4 Operational risk

We assume that all three types of banks are exposed to operational risk. It is reasonable

to assume that there are differences in exposure between the three bank types, despite

our assumption that all three banks have the same overall size. In particular, retail

banks have less exposure to traditional sources of operational risk such as processing,

custody-related activities, and rogue trading incidents than universal and investment

banks. For simplicity we assume that all banks face the same operational risk as it is

difficult to explicitly connect the position sizes with operational losses in our context

(cf., earlier discussion about this issue). We do not consider the advanced modeling

approach under Basel II but instead follow the simpler approach of Rosenberg and

Schuermann (2006). We model the size of the operational losses of the bank over the

time horizon (0, T ) by a Pareto distribution and the occurrence frequency by a binomial

distribution.

In particular, consider x := ln(LOp), where LOp is the operational loss corrected for

a reporting threshold and assume that x ∼ b−1e−x/b with b ≥ 0. Note that if ln(LOp)
is exponentially distributed, then LOp has a Pareto distribution. For the frequency

distribution we assume that the binomial distribution has success probability s ≥ 0

with 365 trials, assuming T = 1 year. We use for all three banks the parameters b = 0.55

and s = 65/365. Again, we express the operational losses as a fraction of the initial

capital:

X
Op
(bp ) :=

LOp(bp )
`0

.

The descriptive statistics and the histogram of the marginal distribution of the opera-

tional losses for the three bank types is presented in Figure 3.9.
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VaR0.99 6.86%
ES0.99 8.34%

RAROCVaR 10.94%
RAROCES 9.00%
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Figure 3.5: Descriptive statistics (left) and histogram with a kernel density estimate overlay
(see Appendix) of the distribution of the loan portfolio P&L divided by the initial capital of the
investment bank.

3.5 Modeling liquidity risk

While it is beyond the scope of this thesis to discuss the liquidity risk modeling task in

great detail, we aim to introduce some simple, yet reasonable probability models for

the liquidity call function and the proceed functions. A typical way in finance to think

of the risk of an entity is to conceptualize it as a function of idiosyncratic and systemic

factors. This line of reasoning is also useful for liquidity risk as it is common practice

in liquidity stress scenario analyses to think in terms of idiosyncratic and systemic

stress scenarios (Matz and Neu, 2007). We would like to express this dichotomy in

our liquidity modeling. More specifically, we let the probability of funding problems

(liquidity calls) depend on changes in the BIS ratio of the bank. In scenarios with large

decreases in the ratio, the probability of positive liquidity calls is greater. Due to the

fact that the BIS ratio depends on the P&L distribution of the bank, we internalize

the funding liquidity risk and avoid having to specify the probabilistic dependency

separately.

3.5.1 Liquidity call function

We apply the idea behind the (Bernoulli) mixture model introduced earlier for credit risk

modeling to the problem of modeling the liquidity call function. We assume that given

the realization of the BIS ratio change, i.e., the idiosyncratic risk factor, the probability

of a set of liquidity call scenarios is independent. As a result, the dependence between

liquidity calls is purely driven by the dependence of the common risk factors, i.e.,

the BIS ratio change.8 The intuition is that solvency problems, represented by the

8A natural extension to our setting would be adding an additional random systemic risk factor. This
extra term would allow us to model funding effects that do not originate from a bank’s idiosyncratic
solvency problems but from systemic effects such as contagious reputation damages.
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VaR0.99 23.95%
ES0.99 27.63%

RAROCVaR 12.22%
RAROCES 10.59%
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Figure 3.6: Descriptive statistics (left) and histogram with a kernel density estimate overlay (see
Appendix) of the distribution of the trading portfolio P&L divided by the initial capital of the retail
bank.

downward changes of the BIS ratio, precede funding problems. Consequently, we

assume that the conditional probability of liquidity calls is higher in scenarios in which

the downward change of the BIS ratios is large.9 In practice, the BIS ratio is defined as

BIS ratio :=
Tier I+II capital

RWA
,

where RWA are the risk-weighted assets. We do not distinguish between the types of

capital and we use

BIS0 :=
`0

0.75V lb
0 (p

lb)+V tb
0 (p

tb)
and BIST :=

`0+X (bp )
0.75V lb

0 (p
lb)+V tb

0 (p
tb)

, (3.8)

as a proxy for the initial and the random BIS ratio at time T , respectively. The numerator

is the bank’s capital per scenario and the denominator is the bank’s initial RWA, where

we assume that the liquidity portfolio has zero weight, the trading book has a weight of

one, and the loan book has a weight of 0.75.10 However, we are primarily interested in

the downward percentage change in the ratio over a year, i.e.,11

∆BIS :=
BIS0−BIST

BIS0
=−

X (bp )
`0

,

and

Π :=max(0,∆BIS) =max

�

0,−
X (p )
`0

�

, (3.9)

9In a dynamic setting, it would be more reasonable to work with the rate of change of the BIS ratio
over the time interval, rather than simply the difference between the start and the end values, as a slow
and steady decline sends a different signal to fund providers than an abrupt decline.

10In practice, one assigns different weights to different types of loans, e.g., mortgages receive lower
weights than corporate loans. We do not make these distinctions.

11Alternatively, we could let the type of losses (credit loss, market loss, op-loss) have different impacts
on the conditional liquidity call probability.



3.5 Modeling liquidity risk � 77
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Figure 3.7: Descriptive statistics (left) and histogram with a kernel density estimate overlay (see
Appendix) of the distribution of the trading portfolio P&L divided by the initial capital of the
universal bank.

so that the RWA specification drops out.12 Now suppose there are S > 1 different

liquidity call scenarios, indexed by s = 1, . . . ,S. Each scenario s occurs with a probability

prΠs conditional on a realization of the BIS ratio change Π=π, so that

prΠs = f s (π)with Π∼ F,

where F is the distribution function of Π and link function f s : [0,1]→ [0,1] for s =
1, . . . ,S. Notice that the liquidity call scenarios S only depend on the EC scenarios via Π.

We assume that we have unit positions in liabilities, i.e., `dep = `st = `lt = 1, so that the

notional values for each liability category is simply

Ld
0 =φd L 0(`) =φd 500 bln for d ∈ I := {dep, st, lt}.

We assume that the liquidity call in scenario s is given by
∑

d∈I Ld w s
d , with w s

d ∈ (0,1]
per liability class d ∈ I . Note that capital, i.e., `0, does not carry any risk weight. We

assume for simplicity that w s
d are deterministic for all d and s but differ among liability

classes and scenarios. The risk weights should reflect the riskiness of the funding

category, taking into account contractual optionalities, payment schedules, investor

diversification, general “stickiness”, etc. The liquidity call sizes can then be interpreted

as the (liquidity) risk-weighted liabilities, akin to the notion of RWA used in Basel I and

II, but now per scenario. The conditional probability distribution function of α is then

given by

(α |Π=π) =



















0, with probability prΠ0 = 1−
∑S

s=1 prΠs
∑

d∈I w 1
d Ld

0 , with probability prΠ1 = f 1(π),
...

∑

d∈I w S
d Ld

0 , with probability prΠS = fS(π),

(3.10)

12Note that this happens only because we use the initial RWA in the denominator of BIST .
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Figure 3.8: Descriptive statistics (left) and histogram with a kernel density estimate overlay (see
Appendix) of the distribution of the trading portfolio P&L divided by the initial capital of the
investment bank.

Note that the liquidity call function has the properties required as described in Defini-

tion 2.20 and is linear in liabilities:

A(bp ) =α=
S
∑

s=1

 

∑

d∈I

w s
d Ld

0

!

1{s },

where 1{s } is the indicator function for the s ’s liquidity call scenario. For the link

function we assume that f 1, . . . , fS have the same functional form but may have different

parameters. In particular, we assume that

prΠs = f s (π) :=Beta(π, a s ,bs ) for s = 1, . . . ,S, (3.11)

where Beta : [0,1] → [0,1] is the Beta cumulative distribution function with fixed

shape parameters a s > 0 and bs > 0 for scenario s . Note that we cannot directly

use Beta(π, a s ,bs ) as the conditional probabilities because we need to normalize them

first.

For our analysis we consider two liquidity call scenarios, i.e., S = 2: a moderate and

an extreme stress scenario. We set the risk weights corresponding to these scenarios to

moderate : (wdep, wst, w lt) = (0.10, 0.64, 0.08)

extreme : (wdep, wst, w lt) = (0.26, 0.64, 0.24).

We have chosen the risk weights based on some intuitive order constraints among bank

types and liability classes. The weights lead to in the following liquidity call sizes:

Retail Universal Investment

moderate α
V0(p )

20.00% 28.10% 44.98%

extreme α
V0(p )

32.00% 37.70% 48.98%

Note that the risk weights for the liability classes are the same for all bank. It may
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Figure 3.9: Descriptive statistics and histogram of the distribution of the operational losses of the
retail bank expressed as a fraction of the initial capital. As the loss distribution is so heavy-tailed,
the frequency of relatively small losses is very large, we zoomed in on the y-axis.

be more reasonable to have bank dependent weighting vectors but we keep it simple

here. However, to account for the variability of funding liquidity risk between the

different bank types, we assume that the investment bank has a a different set of link

function parameters than the retail and the universal bank. This assumption allows

us to operationalize that an investment bank’s funding liquidity risk is less sensitive

to downward changes in the BIS ratio than retail and universal banks because fund

providers expect a higher volatility due to its business model. More specifically, we use

the parameters as shown in Figure 3.10.

Remark 3.5.1. Clearly, our modeling approach for A is highly stylized since we do

not go into the contractual payment schedules, optionalities, etc. of the liabilities.

Furthermore, we do not model the borrowing capacity of the bank, e.g., using the

interest rate model plus an appropriate bank-specific credit spread (LIBOR). Here again

it might be better to think of the liquidity call scenarios as a cumulative short-term

total net cash outflow under stress, similar to the denominator of the LCR in Basel III.

3.5.2 Modeling proceed functions

We keep the modeling of the bank’s proceed functions straightforward. In particular,

we assume that we cannot liquify the loan book at all in any scenario, i.e., exclude the

possibility of securization of loans. As a result, the banks can only rely on the liquidity

portfolio and the trading book to generate liquidity calls. Furthermore, we assume

that the proceed function for the liquidity portfolio is linear and the discount factor

θ lp ∈ [0, 1] is deterministic and equal to 0.98 so that for 0≤ x lp ≤ p lp we can write

G lp
T (x

lp
0 ,x lp

1 ) = x lp
0 +θ

lpV lp
1,T x lp

1 . (3.12)
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π= 0.2 0.011 0.002
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Figure 3.10: Showing the Beta CDF link function with some reasonable parameter choices for the
retail and universal bank at the top and for the investment bank at the bottom. The higher the
percentage downward change in the BIS ratio proxy, i.e., Π, the higher the conditional probability
of a liquidity call. The link function of the moderate scenarios dominates the link function of the
extreme scenario for all banks. In addition, the link functions of the investment bank are less
steep than the ones of the retail and universal bank. This takes into account that fund providers
of investment banks expect more volatile P&L due to the business model than fund providers of
retail and universal banks.
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Figure 3.11: Showing the normalized proceeds of the government bonds in the liquidity portfolio
as a function of the normalized transaction size, using the initial prices. Note that the liquidity
costs are very small and the marginal costs are constant.

For the trading book we assume that the proceed function is of an exponential form,

i.e., for a given deterministic friction parameter θ tb ∈R+ and 0≤ x tb ≤ p tb we have that

G tb
T (x

tb) =
V tb

T

θ tb
(1− e−θ

tbx tb
). (3.13)

Note that while the friction parameters are deterministic, the proceeds are still random

since the prices are. In Figure 3.11 and Figure 3.12 we show the parameters we use

and plots of the asset proceeds functions using the initial prices. The parameters are

chosen in an ad-hoc manner to provide reasonable results.

3.5.3 Optimal liquidity cost computations

There are several options available to compute the optimal liquidity costs per scenario:

1. Use a standard numerical search algorithm for convex optimization problems

such as fmincon in Matlab,

2. Derive an analytical solution for our example, or

3. Use a numerical algorithm based on Lemma 2.10 on p. 18.

We choose the third option as Lemma 2.10 on p. 18 allows us to derive an efficient and

robust approach to compute the optimal liquidity costs per scenario. The algorithm

exploits the result of Lemma 2.10 on p. 18, which says that for a liquidation strategy

to be optimal each asset position has to be liquidated up to the same µ, taking into

account position bounds. The idea behind the algorithm is straightforward: we set

up a grid of µ values and evaluate the optimal liquidation strategy, adjusted for any

position upper bounds, per asset position at each grid point. Given the vector of

optimal liquidation positions, we can compute for each grid point the corresponding

α and optimal liquidity costs. Collecting these values, we can create a look-up table

which can be used to give us for a given α the optimal liquidity costs. For the last step
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Figure 3.12: Showing the normalized proceeds of the trading book as a function of the normalized
transaction size, using the initial prices. Note that the liquidity costs are initially very small but
run up significantly for larger transaction sizes with increasing marginal costs.

we can use some basic interpolation methods. Our algorithm is similar in spirit to what

is known as the grid search method but it is not quite the same, as our approach is more

efficient because we can make use of the characteristics of the underlying optimization

problem by exploiting Lemma 2.10 on p. 18. For that reason the common drawback of

the grid search approach of exploding number of grid points does not apply. For the

details of the algorithm and the corresponding Matlab code we refer the reader to the

Appendix.

3.5.4 Liquidity risk characteristics of the three bank types

In order to get a feel for the liquidity risk properties of the banks, we display in Fig-

ure 3.13, Figure 3.14, and Figure 3.15 the liquidity cost profile, the normalized liq-

uidation strategies, and the normalized optimal liquidity costs as a function of the

normalized liquidity calls α/V0(p ), using the initial asset prices, for the retail, the uni-

versal, and the investment bank. In addition, we show an excerpt of the look-up table

of our algorithm for each bank. We see that the liquidity cost profiles for all banks are

very similar. Of course, this result is expected as we assumed that the asset portfolio

compositions and the proceed functions are the same across the three bank types,

except for the different portfolio weights. As a result, the main difference between the

bank types is the point at which the banks default from illiquidity. We observe that the

retail bank defaults the earliest. It deafults at liquidity calls larger than 28.66% of total

assets, while the investment bank benefits from its large trading book and defaults at

liquidity calls larger than 62.58% of total assets. The universal bank sits in between with

a liquidity call limit of 47.70% of total assets. Meeting liquidity calls comes at the price

of liquidity costs. At the default point the retail bank incurs costs of approximately 27%

of the initial capital, the universal bank incurs costs of approximately 146%, and the

investment bank incurs costs of approximately 280% of the initial capital.
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The optimal liquidation strategy for all banks involves the following order:

1. use the available cash up to liquidity calls of a size of 1.5% of total assets for the

retail and universal bank and 1% of total assets for the investment bank, as it does

not result in any liquidity costs.

2. use part of the trading portfolio up until the marginal costs of the liquidity portfo-

lio are reached, which is at liquidity calls of a size of ca. 3.4% of the balance sheet

for the retail and the universal and ca. 2.9% for the investment bank.

3. completely use up the liquidity portfolio due to its constant marginal liquidity

costs (linear proceed function), and finally

4. liquidate the rest of the trading book until the critical liquidity call level is reached,

incurring sharply increasing marginal costs (exponential proceed function).

In Figure 3.16 and Figure 3.17 we show the liquidity cost profiles and the optimal

liquidity costs for the three bank types again, but this time using the 99.99% quantiles

of the marginal price distributions. As expected, the shape of the profiles is the same

due to the constant friction parameters of the proceed functions. However, the critical

liquidity call values for each bank are significantly lower, i.e., the banks would default

at lower liquidity calls. The retail bank now barely survives a liquidity call of size 26.0%,

while before it was 28.66%. The universal bank survives a liquidity call of size 42%,

while before it was 47.70%. And the investment bank now survives a liquidity call of

size 54%, while before it was 62.58%.

3.6 Risk aggregation

So far we only specified the marginal loss distributions. However, for the computation

of (L-)EC and (L-)RAROC we need the joint probability distribution to determine the

overall P&L distribution of the three bank types. There are typically two approaches

used to solve the aggregation issue: (1) the hybrid approach and (2) copula approach. In

the hybrid approach we actually circumvent the problem of deriving the joint probabil-

ity distribution and just use a proxy for finding the overall EC from the stand-alone ECs.

The copula approach is more satisfying as it allows us to specify the joint probability

distribution. However, it is also more complicated than the hybrid approach.

3.6.1 Hybrid approach

Let us denote the stand-alone EC of the liquidity portfolio by EC(p lp), the stand-alone

EC of the loan book by EC(p lb), and the stand-alone EC of the trading book by EC(p tb).
Then under the hybrid approach the overall EC of the bank EC(bp ) is given by

EC(bp ) =
q

∑

i∈J

∑

j∈J
EC(p i )EC(p j )ρi ,j ,

where J = {lp, lb, tb} and ρi ,j stands for the correlation between i and j . The approach

is generally less conservative than simply adding up the stand-alone ECs, i.e., ρi ,j = 1
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Figure 3.17: The liquidity cost and optimal liquidity cost profiles as a function of the normalized
liquidity calls α/V0(p ) for the investment bank, using the 99.99% price quantiles.



3.6 Risk aggregation � 89

liquidity pf trading/market risk loans/credit risk Op-risk

liquidity pf 1 0.3 0.3 0.2
trading/market risk 0.3 1 0.5 0.2
loans/credit risk 0.3 0.5 1 0.2
Op-risk 0.2 0.2 0.2 1

Table 3.3: Correlation parameters between different risk types are based on Rosenberg and
Schuermann (2006).

for all i and j , as is required for the regulatory capital under Basel II.13 While the

hybrid approach is often used in practice, we will use on the copula approach in this

chapter because we need the full joint probability distribution to compute the liquidity

adjustment.

3.6.2 Copula approach

Under the copula approach we complete the joint probability model by joining the

marginal distributions with a Student’s t copula with ν degree of freedom and correla-

tion matrix P . We use the Student’s t copula because it can capture “tail dependence”,

in contrast to a normal copula, which has tail independence (McNeil et al., 2005). More

formally, given the marginal distributions functions FX (p lp)(x1), FX (p tb)(x2), FX (p lb)(x3), and

FLOp(x4), we assume that the joint probability distribution for the bank’s P&L is given by

F (x1,x2,x3,x4) :=P(X (p lp)≤ x1, X (p tb)≤ x2, X (p lb)≤ x3, LOp ≤ x4)

=C t
ν ,P (FX (p lp)(x1), FX (p tb)(x2), FX (p lb)(x3), FLOp(x4)),

with C t
ν ,P : [0, 1]d → [0, 1] and

C t
ν ,P (u 1, . . . , u d ) :=

∫ t −1
ν (u 1)

−∞

· · ·
∫ t −1

ν (u d )

−∞

Γ( ν+d
2
)

Γ( ν
2
)
p

(πν )d |P |

�

1+
x ′P−1x

ν

�− ν+d
2

d x ,

where P is the correlation matrix implied by the dispersion matrix
∑

and t −1
ν denotes

the quantile function of a standard univariate Student’s t distribution with ν degrees of

freedom. The parameter ν determines the extent of tail dependence. In the literature, ν

ranges from three to eight for strong tail dependence (Demarta and McNeil, 2005), so we

take a midpoint: ν = 5.5. We use the correlation parameters in Table 3.3. The estimates

are based on the benchmark correlations used in Rosenberg and Schuermann (2006).

The authors take the midpoint inter-risk correlation estimates from two academic

13Note that adding up is generally not the worst-case scenario (see Fallacy 3 on p. 251 in McNeil et al.,
2005)
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studies and one industry study.14 Consequently, P is given by

P =











1 0.3 0.3 0.2
0.3 1 0.5 0.2
0.3 0.5 1 0.2
0.2 0.2 0.2 1











.

It is rather straightforward to sample from the joint probability distribution, given we

have specified the Student’s t copula and the correlations. We refer the reader to the

Appendix for further details regarding the sampling procedure.

3.7 Results

3.7.1 Bank type and liquidity risk

Without liquidity risk the ordering of the riskiness is in line with what one would

expected from the description of the bank types. The investment bank is the riskiest,

the commercial is the safest, and the universal bank takes the middle position. Note that

we express the results as a fraction of the initial capital and as the investment bank has

higher initial capital risk measure, we first need to convert the results to compare them

to the other two bank types. The investment bank’s VaR of 79.08% becomes 126.53%

(0.7908φinv
equity/φ

ret
equity) and the ES of 95.22% becomes 152.35% (0.9522φinv

equity/φ
ret
equity)

expressed as a fraction of the retail and universal bank’s initial capital. All three banks

pass the VaR test of capital adequacy by a reasonable margin. With regard to the ES

test only the universal bank fails to pass it. In case ES is used for an capital adequacy

analysis, the universal bank falls short by 8.87% and the management would need to

engage in corrective actions. The probability of default (PD) of all three banks is as

expected well below the confidence level of 1%.15 In line with the ES result the PD of the

universal is the highest with 0.48%. Note that the PD of the investment bank is lower

only because of the higher initial capital. In terms of risk-adjusted performance, the

three banks are pretty similar for both RAROC with VaR and RAROC with ES, with the

investment bank having the lowest ratio of the three bank types by a small margin.

The results become more interesting with the inclusion of liquidity risk. As expected

the inclusion of liquidity risk increase the riskiness and decreases the risk-adjusted

performance across all three bank types. Liquidity risks increases the VaR by 17.03%,

35.85%, and 121.61% for the retail, universal, and investment bank, respectively. That

would mean a failure to comply with a capital adequacy test for the universal and

investment bank. The latter is also reflected in the sharply increased PDs of the two

bank types. The universal bank now has a PD of 2.56% and the investment bank a PD

of 5.4%. The influence of liquidity risk has a similar impact on ES as it has on the VaR,

14Note that the linear correlation coefficients are not preserved under the nonlinear transformation to
the joint model.

15Note, however, that the PDs are still high compared to the average cumulative default rates of
Moody’s (see, for instance, p. 292 in Hull (2010)), the three banks have a PD of around Baa (0.17%).
However, these estimates do not take the more recent events of the Subprime crisis into account.
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Retail Universal Investment

VaR0.99 /`0 68.07% 86.67% 79.08%
ES0.99 /`0 88.72% 108.87% 95.22%
RAROCVaR 13.65% 14.04% 12.50%
RAROCES 10.47% 11.18% 10.38%
PD†

X 0.14% 0.48% 0.21%

L-VaR0.99 /`0 85.10% 122.52% 200.69%
L-ES0.99 /`0 935.40% 143.66% 218.84%
L-RAROCVaR 0.59% 8.25% 1.77%
L-RAROCES 0.05% 7.03% 1.63%
PD††

X A 0.67% 2.56% 5.40%
† PDX :=P{X (p̂ )<−`0},
†† PDX A :=P{X A (p̂ )<−`0}.

Table 3.4: Overview of the statistics of the overall P&L with and without liquidity risk, i.e., X and
X A , for the three bank types (simulation trials = 250, 000). The addition of liquidity risk increases
the riskiness and decreases the risk-adjusted performances markedly. Using L-VaR, the universal
and the investment bank fail the capital adequacy test, as the initial capital levels fail to cover the
capital requirements, while the retail passes. Using L-ES, all three banks fail the adequacy test.
Note that the high L-ES value of the retail bank can be explained by the fact that the retail bank
defaults in some scenarios due to illiquidity and hence suffers from the 100% rule. Also note that
we do not claim that the PDs values after the liquidity risk adjustment are meaningful beyond
our stylized illustration.

with the exception for the retail bank. The retail bank faces an increase of 846.68% in its

ES number as a result of liquidity risk. This large increase can be explained by the 100%

rule that goes into effect in scenarios where a bank cannot meet the liquidity call and

as a result defaults. Interestingly, these default states are only reflected in the histogram

visually (see Figure 3.18 on p. 93) and numerically in the outcome of L-ES. However,

this result makes sense as the 100% rule is far in the tail and at our confidence level,

L-VaR does not take it into account, as can be induced from the fact that the PD with

liquidity risk, while increased, is still less than the confidence level: PDX A = 0.67%< 1%.

Liquidity risk causes the RAROC figures to decrease steeply for all banks. However,

the retail bank again stands out due to the fact that the expected P&L (numerator of

RAROC), while still positive, is markedly affected by the workings of the 100% rule.

In Figure 3.21 on p. 96, Figure 3.22 on p. 97, and Figure 3.23 on p. 98 we investigate

the effects of liquidity risk for the three bank types in more detail. We present the

expected value, VaR, and ES of the optimal liquidity costs C A
T (p̂ ), the unconditional

probabilities of the three liquidity call scenarios, and the histograms of the conditional

liquidity cost distributions. We first notice that of the three banks, the retail bank has

the lowest probabilities of having moderate or extreme liquidity calls. Interestingly,

the universal bank has slightly higher occurrence probabilities than the investment

bank. This effect can mainly be explained by the fact that that the higher volatility of

the BIS ratio of the investment bank is overpowered by the lesser sensitivity to ratio
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changes via the beta parameters of the liquidity call function (see Figure 3.10 on p. 80).

As the liquidity call size is not random, we already knew that the investment bank has

the largest liquidity call size, followed by the universal bank, and then the retail bank,

reflecting the riskiness of the funding structure (portfolio weights).

The histograms in the previous figures give a good overview of the impact the

moderate and extreme liquidity call scenarios have on the incurred liquidity costs. In

all three cases, there is a significant difference between the magnitude of the liquidity

costs between the moderate and the extreme liquidity call scenario. This is most

apparent for the retail bank, as the moderate scenario only leads to relatively small

liquidity costs (VaR0.99(C A
T (bp ))/`0 = 8.6%), while the extreme scenario leads to the bank’s

default and hence the application of the 100%, whenever it occurs. This result was

to be expected as the extreme scenario of the retail bank leads to a liquidity call of

32% of the total assets and we know from Figure 3.16 on p. 87 that the default barrier,

using the 99.99% quantile of the marginal price distributions, is at around 26% of

the total assets. Similarly, we could have expected that the universal and investment

bank would not default by illiquidity states. Note also, that for the retail bank the

probability of the extreme scenario occurring is less than the confidence level of VaR:

P{extreme scenario}= 0.44%< 1%. This fact explains more directly why the L-VaR is

not sensitive to the default by illiquidity states and hence the 100%.16 The liquidity costs

characteristics of the investment bank are quite different from that of the retail bank.

In both the moderate and the extreme scenario the liquidity costs are very large, which

is reflected in the VaR and ES of the liquidity costs of 118.81% and 135.57%, respectively.

However, despite the large liquidity call size of 44.98% and 48.98% of the total assets,

the investment bank does not come close to its default barrier, even in the extreme

scenarios as it is above 50% in those cases (cf. Figure 3.17 on p. 88). The picture of the

universal bank is similar to that of the investment bank, except that the liquidity costs

are significantly smaller in general.

3.7.2 Impact of bank size

In Theorem 2.22 on p. 33 and Theorem 2.26 on p. 38 we have confirmed the common

intuition that size does matter in the face of liquidity risk when it comes to the deter-

mination of capital requirements. Without liquidity risk position size does not matter

since linearity in positions and positive homogeneity of the risk measure ensures that

for λ≥ 0 it holds that

EC(λp ) =λEC(p )

In contrast, we could show that if we use a positively (super)homogenous underlying

risk measure and a convex A we have for λ≥ 1 and bp ∈ bP that

L-EC(λbp )≥λL-EC(bp ).

16Recall Equation 2.10 on p. 29 and the general discussion of the sensitivity of risk measures to the
default by illiquidity states.
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(see Theorem 2.26 on p. 38). The super-homogeneity effect can be explained by the

convexity of the liquidity call function and the concavity of the proceed functions. The

former deals with the fact that liquidity calls at least grow linearly with portfolio size

and the latter refers to the fact that the more a bank has to sell in difficult times the less

it gets per unit.

Since the only deviation from the setup in Chapter 2 is the inclusion of the non-

positional operational losses (see Section 3.3 on p. 66), we should expect only minor

distortions of the results. In Figure 3.24 on p. 101, Figure 3.25 on p. 102, and Figure 3.26

on p. 103 we plotted the scaling factor λ ∈ (0,2] against the VaR, ES, L-VaR, and L-ES

divided by the initial capital for all three banks. We first notice that the VaR and ES as a

fraction of the initial capital have the same shape for all banks. For λ values close to

zero, the values are extremely large and then monotonically decrease over the whole

range. The decrease at first is rapid, while the values level off but still decrease from

λ values of around 0.3 and onwards. This behavior can perfectly be explained by the

distorting effects of the operational losses. Since we assume that operational losses

are independent of the portfolio size, it is clear that the VaR and ES as a fraction of the

initial capital will be very large for small portfolios (near zero λ values), i.e., the initial

capital is very small in comparison to the operational losses. Clearly, it would be more

reasonable to have some form of scaling of operational losses but chose not to to do it

because there is no obvious way to do. The monotonically decreasing nature results

from the fact that the operational losses have less and less of on impact due to the

increasing capital. Clearly, without the distorting effects of operational risk, we would

observe a horizontal line in all plots for the liquidity risk-free case, due to linearity.

The impact of bank size with liquidity risk follows a similar pattern for the universal

bank and the investment bank. We see in Figure 3.25 on p. 102 and Figure 3.26 on p. 103,

apart from the discussed initial op-risk effect, that L-VaR and L-ES increase for λ values

greater than one. This result is in line with the general result of super-homogeneity. In

our case this also means that increasing liquidity risk effect dominates the decreasing

operational risk impact. The only difference between the two banks is that the super-

homogeneity effect of liquidity risk is a great deal stronger for the investment bank

than the universal bank. This difference is reasonable as the investment bank always

has higher liquidity calls and relies more on fire selling, facing the concave proceed

function, than the universal bank.

The retail bank shows some different pattern. In particular, in Figure 3.24 on p. 101

we see a bump at around λ= 0.3 in both the L-VaR and the L-ES plot. At these values

the L-VaR jumps to 2000%, which is exactly amounts to a loss of the total assets over

the initial capital:
V0(p )

φequityV0(p )
=

1

φequity
=

1

0.05
= 20.

This means that the probability of the extreme scenario occurring must be larger or

equal than the confidence level of the risk measure at these values, i.e.,P{extreme scenario} ≥
1%, as we know that the retail bank defaults whenever the extreme scenario occurs
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(see Figure 3.21 on p. 96). In other words, L-VaR for these λ values is sensitive to the

default by illiquidity states and hence the 100%. The fact that the riskiness decreases for

upscaling means that the increasing liquidity risk effect is dominated by the decreasing

op-risk impact, which stands in contrast to the effect for the other two banks.

3.8 Conclusions

We have shown that even a simple but reasonable implementation of liquidity risk

modeling leads to non-trivial results. In particular, we have shown that liquidity risk

can lead to a significant deterioration of capital requirements and risk-adjusted perfor-

mance for banks with safe funding but illiquid assets, exemplified by the retail bank,

and banks with liquid assets but risky funding, exemplified by the investment bank. It

is worth mentioning that the retail bank gets punished in our illustration mostly due to

Type 2 liquidity risk. In addition, we have shown that the formal results of Theorem 2.26

on p. 38 are relevant, especially the super-homogeneity result of liquidity-adjusted risk

measures. Overall bank size and the non-linear scaling effects of liquidity risk become

very apparent for banks that have to rely on a large amount of fire selling as represented

by the investment bank. Overall, our illustration confirms the common intuition that

a bank’s liquidity risk management must involve the careful balancing between the

market liquidity risk of its assets and the funding risk of its liabilities. It may be helpful

to think of the overall liquidity risk of a bank in terms of the occurrence frequency of

liquidity calls, liquidity call severity, and the severity of the liquidity costs in case of

liquidity calls. Overall, it is comforting that our liquidity risk formalism captures and

brings forth the crucial dimensions of a bank’s liquidity risk.

There appears to be a friction between what happened during the last banking crisis

and some of our results in this illustration. In our analysis, while the investment bank

was highly susceptible to liquidity calls and high liquidity costs, it did not suffer from

default by illiquidity states due to their large trading portfolio. In reality, investment

banks were the banks that defaulted. What are the differences between the charac-

teristics of what we labeled an investment bank and the real world counterparts in

question? While there could be numerous explanations for this discrepancy, a reason-

able explanation is that in reality there was a markedly misjudgment of the market

liquidity of the trading portfolio of the investment banks in times of crisis or at least in

that particular situation. This might be explained by the fact that the real investment

banks did not have the traditional “liquid” trading positions in their trading portfolio

but also loan activities. In so far, the results of our analysis reflect the “ideal” idea of

the liquidity risk characteristics of an investment bank: susceptible to funding risk but

matched with a large marketability of its asset position.17 In that sense, it may be more

reasonable to differentiate the stochastic modeling of the proceed functions and reflect

the idea that the market liquidity risk is prone to jumps. Fortunately, this is no defect of

17In fact, this also described the special investment vehicles (SIV) that suffered from the same prob-
lems.
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our formalism but a question of model choice.

There is an interesting link between our modeling of a bank’s funding liquidity risk

and the novel securities known as contingent convertibles (CoCos). A CoCo is a bond

that will automatically convert to core capital if a specific event occurs. For banks this

usually involves a fall of the bank’s Tier 1 capital below a specific level. It should be clear

that in our illustration a bank having CoCos would directly reduce its funding liquidity

risk due to a reduction in liquidity call sizes in stress scenarios.

While our illustration has been non-trivial, it is still overly stylized compared to

the real-world EC models of banks. In case our liquidity risk formalism is deemed

to be useful by practitioners, there is a need for better joint probability models for

liquidity risk and solvency risk. However, there is often the sentiment that “it is difficult

to quantify” liquidity risk and hence it should be analyzed predominately with the help

of stress scenarios and not full probability models.18 A possible explanation for this

line of reasoning is that people often believe that it only makes sense to use probability

models in situations where relevant data is deemed to be redundant. Unfortunately,

for liquidity risk modeling this is seldom the case. In contrast, we believe that a lack

of “sufficient” statistical data should not automatically lead to abandoning the use of

probability models. As soon as we fully embrace the Bayesian perspective after De

Finetti and view probability theory “merely” as an useful mathematical tool to frame

and represent our uncertainty about future events, we are not purely limited to the

data-driven approaches anymore. Ideally, any form of “background knowledge” should

be factored into the model choice and if the existing background information cannot

single out a particular probability model in the model space, then there should be

no hesitation to use ambiguity (second-order uncertainty) representations. While

we believe that generalizing the uncertainty representation in this direction will be

beneficial for a more systematic and quantitative liquidity risk management, we also

realize that more research is needed before these ideas can be applied in practice in a

systematic manner.

Appendix

A. Normal approximation for default count simulations

The de Moivre-Laplace Theorem (see, e.g., p. 186 in Feller (1968)) states that a binomial

distribution B(n , p ) can be approximated by N (np , np (1−p )), if n is large and p is not

too close to 0 or 1. We simulate the default counts of a category as follows:

Algorithm 3.2 Simulation of default counts using normal approximation.

1. Generate Zr ∼N (µr ,σ2), using the parameters in Table 3.2.

18Recall the earlier quote from BIS (2009) on p. 6 “Not all risks can be directly quantified. Material risks
that are difficult to quantify in an economic capital framework (eg funding liquidity risk or reputational
risk) should be captured in some form of compensating controls (sensitivity analysis, stress testing,
scenario analysis or similar risk control processes).”
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2. Compute vector of conditional default probabilities qr (z ) = Φ(Zr ), where Φ is the

standard normal distribution function.

3. Generate vector of default counts M r |Zr = z r ∼B(p lb
r ,Φ(Zr ))≈N (p lb

r Φ(Zr ), p lb
r Φ(Zr )(1−

Φ(Zr ))).

B. Sampling from a multivariate distribution using copulas

Here we briefly describe how to simulate realizations from a multivariate distribution,

given we have a well-specified copula and marginal distributions, and we know how to

generate realizations from the copula and the marginals. We can use the converse of

Sklar’s Theorem (see for example Theorem 5.3 in McNeil et al. (2005)) to sample from a

joint distribution function as follows:

Algorithm 3.3 Simulation from multivariate distribution using copulas.

1. Generate d -dimensional random vector U ∼ C , where C : [0,1]d → [0,1] is the

copula of the joint distribution function.

2. Return d -dimensional random vector X := (F−1
1 (U1), . . . , F−1

d (Ud )), where F−1
1 , . . . , F−1

d

are the cumulative inverse distribution functions of the marginals.

The algorithm ensures that X has margins F1, . . . , Fd and a multivariate distribution

function

C (F1(x1), . . . , Fd (xd )).

See Chapter 5 in McNeil et al. (2005) for a textbook treatment of copulas. For applying

Algorithm 3.3, we need (a) to be able to generate samples from the copula and (b)

have the cumulative inverse distribution function for all marginals available. The first

requirement is rather straightforward as we are dealing with the easy to use Student’s t

copula, i.e., C =C t
ν ,P . In most modern computer software packages, we can even rely on

a built-in functions to do the job. For example, in Matlab we can use the function “cop-

ularnd” with the student-t option. The second requirement is not as straightforward as

we cannot rely on built-in functions because we do not only have parametric marginals.

There are several ways to approach the issue. We choose to use non-parametric ker-

nel density estimation to estimate the “empirical” cumulative distribution function

and then derive the inverse CDF. See also the next section regarding kernel density

estimation. In Listing 3.1 we show our Matlab implementation.



106
�

A
p

p
en

d
ix

1 function output = samplejoint (samples , rho , nu , num_trials )
2 % Synopsis
3 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 % output = samplejoint ( samples , rho , nu , num_trials )
5 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
6 % Description
7 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8 % samplejoint generates num_trials j o i n t r e a l i z a t i o n s
9 % using a student−t copula , using KDE estimated

10 % marginals of the samples r e a l i z a t i o n s
11 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
12 % Inputs
13 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
14 % ( matrix ) samples : NxM matrix of marginal
15 % r e a l i z a t i o n s
16 % ( matrix ) rho : MxM matrix of rank
17 % c o r r e l a t i o n s
18 % ( s c a l a r ) nu : degrees of freedom of
19 % student−t copula
20 % ( s c a l a r ) num_trials : number of j o i n t t r i a l s
21 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
22 % Outputs
23 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
24 % ( matrix ) output : ( num_trials )xM j o i n t
25 % r e a l i z a t i o n s matrix
26 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

27 % Example
28 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
29 % output = samplejoint ( normrnd ( 0 , 1 , 1 0 0 0 0 , 2 ) , 0 . 8 , 5 , 1 0 0 0 )
30 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
31 % Functions used
32 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
33 % s i z e , copularnd , ones , kde , sort , min , unique ,
34 % i n t e r p 1
35 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
36 num_dim = s i z e (samples , 2 ) ;
37 U = copularnd ( ' t ' ,rho , nu , num_trials ) ;
38 joint_samples = ones (num_trials , num_dim ) ;
39 f o r i=1:num_dim
40 joint_samples ( : , i ) = kdeicdf (samples ( : , i ) ,U ( : , i ) ) ;
41 end
42 output = joint_samples ;
43 end
44 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
45 function output = kdeicdf (samples , U ) % Kernel estimate of
46 [~ , ~ ,x , cdf ] = kde (samples ) ; % the i n v e r s e CDF
47 table = [ s o r t (x ) ' min ( 1 ,cdf ) ] ;
48 [~ ,ind_unique , ~ ] = unique (table ( : , 2 ) , ' f i r s t ' ) ;
49 table = table (ind_unique , : ) ; % d e l e t e d u p l i c a t e s
50 output = i n t e r p 1 (table ( : , 2 ) ,table ( : , 1 ) ,U ) ;
51 end

Listing 3.1: Sampling joint realization from a matrix of marginal samples, using KDE estimates of the inverse CDFs and a student-t copula.
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C. Kernel density estimation

In this chapter, we use kernel density estimation (KDE) to generate samples from the

joint probability distribution. KDE is a non-parametric method of estimating the

probability density function of a random variable. Given an independent and identi-

cal distributed sample of random variables (x1, . . . ,xn ) ∈ Rn , b > 0, and a symmetric

function K that integrates to one, the kernel density estimator is given by

f h(x ) :=
1

nb

n
∑

i=1

K
�x −x i

b

�

.

The function K is known as the kernel function and the parameter b is known as the

bandwidth. There are several candidates for the kernel function, but very often the

standard normal density functionφ, i.e., K (x ) =φ(x ) is used for convenience. We also

use it for our purposes. The choice of the bandwidth involves the trade-off between

the bias and the variance of the estimator. We use a Matlab function (maintained by

one of the authors) based on the ideas presented in Botev et al. (2010). It involves an

automatic data-driven bandwidth selection that is generally better than the common

rule-of-thumb approach, based on the assumption that the samples are normally

distributed. We refer the interested readers to the article for more information.

Another important use of the KDE is the computation of the Euler allocation for

VaR. We used this result in the simulation example of Chapter 2. Recall the definition of

the VaR risk contribution:

VaRβ (p i | p ) =−E [p i X i |X (p ) =−VaRβ (X (p ))]. (3.14)

As pointed out in Tasche (2008), we cannot simply substitute the “empirical” sample

data from the simulation in Equation 3.14 to compute the risk contribution, because

the conditioning event does not have a positive probability. However, we can use the

KDE to our advantage. From Tasche (2008, 2000) we get the Nadaraya Watson kernel

estimator of Equation 3.14:

VaRβ (p i | p )≈−

∑n
k=1 x i ,k K

�

−VaRβ (X̂+bξ)−xk

b

�

∑n
k=1 K

�

−VaRβ (X̂+bξ)−xk

b

� . (3.15)

D. Optimal liquidation algorithm

With the help of Lemma 2.10 it is possible to find analytical solutions for the optimal

liquidity costs for our illustration per scenario. However, it can become cumbersome

to account for position upper bounds and implement it in code when there are many

different assets involved, possibly with different functional forms of proceed functions.

Fortunately, we can avoid such problems by using a simple, robust, and efficient

numerical grid-search algorithm based on Lemma 2.10. For the latter we simply create

a look-up table as shown in Table 3.5 and find for a given α the corresponding optimal

liquidity costs. There is no harm in using the numerical search algorithm because
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we do not have to worry about local optima because we are dealing with a convex

optimization problem.

D.1 Some analytical solutions

Before we turn towards the algorithm, we show why it can become cumbersome to

derive and code the analytical solutions directly.

Example 3.4 Linear proceeds. Suppose we have a portfolio p ∈P and all N proceed

functions are linear functions:

G i (x i ) =βi Vi x i with 0≤βi ≤ 1 for i = 1, . . . , N .

Recall that the optimal liquidity costs are given by:

C α(p ) =min{C (x ) |G (x ) =α and 0≤ x ≤ p}.

For the solution in the linear situation, we do not even need the help of Lemma 2.10,

but can directly solve it. Consider the indices are assigned so that i > j =⇒ βi ≥βj . In

other words, we now have that β0 ≥ β1 ≥, . . . ,βN . The optimal liquidation strategy is

then given by

x ∗lin(p ,α) =







































(α,~0) for α≤ p0

(p0, α−p0

V1β1
,~0) for p0 <α≤G (p0, p1,~0)

(p0, p1, α−G (p0,p1,~0))
V2β2

,~0) for G (p0, p1,~0)<α≤G (p0, p1, p2,~0)
...

...

(p0, . . . , pN−1, α−G (p0,...,pN−1)
VNβN

) for G (p0, . . . , pN−1, 0)<α≤G (p )

; for α>G (p ),

and the optimal liquidity costs by C α(p ) =V (x ∗lin(p ,α))−α. For a numerical example,

consider we have that N = 2 and a portfolio given by p = (p0, p1, p2) = (0,10,10).
Furthermore, we have that V1 = 8, V2 = 10, V (p ) = p1V1+p2V2 = 180, α= 100, β1 = 0.8,

and β2 = 0.6. The optimal liquidation strategy is

x ∗lin(p , 100) = (0, 10,
10

3
)

and the optimal liquidity costs are

C (x ∗lin(p , 100)) =C α(p )≈ 113.33−100= 13.33.

Example 3.5 Exponential proceeds. Now suppose we have a portfolio p ∈P and all N

proceed functions are exponential proceed functions:

G i (x i ) =
Vi

θi
(1− e−θi x i )with θi ≥ 0 for i = 1, . . . , N .

Using Lemma 2.10, it is straightforward to show that the optimal liquidation strategy as

a function of µ is given by

x ∗(µ) = (x ∗1, . . . ,x ∗N ) = (−
lnµ

θ1
, . . . ,−

lnµ

θN
),
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if we do not take into account position upper bounds. Furthermore, we have that

µi (x i ) =
G
′

i (x i )
Vi

= e−θi x i ,

α(µ) =
N
∑

i=1

Vi

θi
(1−µ),

and

µ(α) = 1−

 

N
∑

i=1

Vi

θi

!−1

α.

Now the optimal liquidation strategy as a function of α of the i th position is given by

ex ∗i ,exp(α) =−
ln(1− (

∑N
i=1

Vi

θi
)−1α)

θi
,

and the whole optimal liquidation strategy by ex ∗exp(α) = (ex
∗
1,exp(α), . . . , ex ∗N ,exp(α)). The

optimal liquidity costs as a function of α for a given p are then given by

C α(p ) =C (ex ∗exp(α)) =V (ex ∗exp(α))−G (ex ∗exp(α))

=V (ex ∗exp(α))−α.

However, we need to take into account the position upper bounds of the portfolio. In

order to achieve this, consider the following functions for given p ∈P :

eµi :=µi (p i ) for i = 1, . . . , N .

Now consider we reassign the indices so that i > j =⇒ eµi ≥ eµj . For every eµi there is a

corresponding eαi given by

eαi :=
N
∑

j=i

Vj

θj
(1− eµi )+

i
∑

k=1

Gk−1(pk−1).

Note that we have that eα1 ≤ eα2 ≤ . . . ≤ eαN . The optimal liquidation strategy for the

constrained case is then given by

x ∗(α) =































(α,~0) for α≤ p0

(p0, ex ∗1,exp(α), . . . , ex ∗N ,exp(α)) for p0 <α≤ eα1

(p0, p1, ex ∗2,exp(α), . . . , ex ∗N ,exp(α)) for eα1 <α≤ eα2

...
...

(p0, . . . , pN−1, ex ∗N ,exp(α)) for eαN−1 <α≤ eαN

.

For a numerical example, consider we have that N = 2 and a portfolio given by p =
(p0, p1, p2) = (0, 10, 10). In addition, we have that V1 = 8, V2 = 10, V (p ) = p1V1+p2V2 = 180,

α= 100, θ1 = 0.02, and θ2 = 0.08 C 100(p ) = 11.05 x ∗(100) = (0, 10, 3.1).

µ1(p1) = e−0.02·10 ≈ 0.82

µ2(p2) = e−0.08·10 ≈ 0.45
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µ x ∗1 . . . x ∗N G (x ∗) =α C (x ∗) =C α(p )

1
...

...
...

...
...

...
0

Table 3.5: Look-up table behind the numerical algorithm for finding the optimal liquidity costs.

eα1 =
∑ Vi

θi
(1−µ1(p1))≈ 525(1−0.82) = 94.5

Hence, we generate 94.5 cash using the unconstrained optimal strategy, but then asset 1

is exhausted and we need to generate the rest 100−94.5= 5.5 solely from the remaining

asset 2 position.

C 100(p ) =V (x ∗(eα1))+V (−
ln(1− (V2

θ2
)−1(α− eα1))

θ2
)−α

≈ 8 ·p1+10 ·
θ1p1

θ2
+10(−

ln(1−5.5/125)
0.08

)−100

≈ 80+25+5.62−100

≈ 10.43

While it is possible to find analytical solutions and turn them into algorithm, we provide

a simpler solution that can readily adjusted for different forms of proceed functions.

D.2 Grid-search algorithm

The algorithm involves the following five steps:

1. Set up a grid of µ values between 0 and 1. The grid does not have to be evenly

spaced.

2. Evaluate the optimal liquidation strategy per asset position at each grid point,

taking into account position upper bounds.

3. Compute for each grid point the corresponding α and optimal liquidity costs,

using the vector of optimal liquidation positions.

4. Collecting these values and create a look-up table.

5. Search for the optimal liquidity costs for a given α in the look-up table, using

some form of interpolation method.

The resulting look-up table is shown in Table 3.5. We illustrate the workings of the

algorithm in the following example.

Example 3.6 Algorithm with exponential proceeds. Consider the same data as in

Example 3.5. Recall that

µi (x i ) =
G
′

i (x i )
Vi

= e−θi x i .
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It is straightforward to solve the above equation for x i :

x i =
1

−θi
ln(µ).

Now we can create a table that gives us for any µ the optimal liquidation strategies and

the corresponding α and optimal liquidity costs, taking into account the position upper

bounds:

µ x ∗1 =min(x1, p1) x ∗2 =min(x2, p2) G (x ∗) =α C α(p )

1.0 0 0 0 0

0.8 10 2.79 97.51 10.39

0.6 10 6.39 122.51 21.35

0.4 10 10 141.34 38.66

0.2 10 10 141.34 38.66

0.0 10 10 141.34 38.66

Finally, we can leave out the rows beyond the row with µ= 0.4 because the portfolio is

illiquid at that point.

µ x ∗1 x ∗2 α C α(p )

1.0 0 0 0 0

0.8 10 2.79 97.51 10.39

0.6 10 6.39 122.51 21.35

0.4 10 10 141.34 38.66

Example 3.7 Algorithm - exponential and linear proceeds. Now consider we add 10

units of an asset that has a linear proceed function to the portfolio:

G1(x1) = θ1V1x1,

with θ1 = 0.9 and V1 = 10. Because we have that

µ1(x1) = θ1,

we have that

x ∗1 = p11{θ1=µ}.

The table with a finer-grained µ grid is given in Table 3.6. For using the table as a table

look-up, it is useful to use an interpolation method, e.g., linear interpolation. Apart

from its efficiency and simplicity, we recommend the linear method in our case because

it avoids some undesirable results other methods such as splines have for assets with

linear proceeds. The problem involves large jumps in α in the table when linear assets

are present. Note the jump in α in the above example from just before the use of the

first asset to using the it: 26.25 to 124.50. The linear method correctly assigns the same

µ for αs between the two points.
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µ x ∗1 = p11{θ1=µ} x ∗2 =−
1

0.02
ln(µ) x ∗3 =−

1
0.08

ln(µ) α C α(p )

1.00 0.00 0.00 0.00 0.00 0.00
0.95 0.00 2.56 0.64 26.25 0.68
0.90 10.00 5.27 1.32 124.50 10.81
0.85 10.00 8.13 2.03 150.75 14.57
0.80 10.00 10.00 2.79 169.51 18.39
0.75 10.00 10.00 3.60 175.76 20.20
0.70 10.00 10.00 4.46 182.01 22.58
0.65 10.00 10.00 5.38 188.26 25.59
0.60 10.00 10.00 6.39 194.51 29.35
0.55 10.00 10.00 7.47 200.76 33.97
0.50 10.00 10.00 8.66 207.01 39.64
0.45 10.00 10.00 9.98 213.26 46.56
0.40 10.00 10.00 10.00 213.34 46.66

Table 3.6: Look-up table for Example 3.7.

D.3 Matlab implementation

Here we show a Matlab implementation of the above algorithm. The code allows for

an arbitrary mix of assets with exponential proceed functions and assets with linear

proceeds.
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52 function out = mugridtable (A , B , grid_step )
53 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
54 % Synopsis
55 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
56 % out = mugridtable ( A , B , g r i d _ s t e p )
57 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
58 % Description
59 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
60 % mugridtable computes look−up t a b l e t h a t can used f o r
61 % the computation of the optimal l i q u i d i t y costs ,
62 % value , and s t r a t e g y f o r any number of combination of
63 % l i n e a r and exponential proceed functions
64 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
65 % Inputs
66 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
67 % ( matrix ) A : 3xN matrix
68 % ( matrix ) A : 3xM matrix
69 % ( s c a l a r ) g r i d _ s t e p : determines the g r a n u l a r i t y of
70 % the mu g r i d ( 0 , 1 )
71 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
72 % Outputs
73 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
74 % ( matrix ) out : Lx (N+M+3) matrix represent ing the
75 % look−up table , where L =
76 % length ( mu_grid ) ;
77 % out ( : , 1 ) mu g r i d
78 % out ( : , 2 :N+1) optimal s t r a t e g y
79 % f o r a s s e t s with
80 % l i n e a r proceeds
81 % per mu
82 % out ( : ,N+1:end−2) optimal s t r a t e g y
83 % f o r a s s e t s with
84 % l i n e a r proceeds
85 % per mu
86 % out ( : , end−1) l i q u i d i t y c a l l
87 % per mu
88 % out ( : , end ) optimal l i q u i d i t y
89 % cost per mu
90 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
91 % Example

92 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
93 % mugridtable ( [ 1 0 ; 1 0 ; 0 . 9 ] , [ 1 0 ; 1 0 ; 0 . 0 8 ] , 0 . 5 )
94 % ans =
95 % 1.0000 0 0 0 0
96 % 0.5000 10.0000 8.6643 152.5000 34.1434
97 % 0 10.0000 10.0000 158.8339 41.1661
98 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
99 % Functions used

100 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
101 % inputParser , a l l , i s f i n i t e , s i z e , i s s c a l a r , length ,
102 % ones , l inproceeds , log , expproceeds
103 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
104 % References
105 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
106 % [1 ] Loebnitz , K . and Roorda , B . (2011) . L i q u i d i t y
107 % Risk meets Economic C a p i t a l and RAROC.
108 % http : / / ssrn . com/ a b s t r a c t=1853233.
109 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
110 % Author
111 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
112 % K o l j a Loebnitz <k . loebnitz@utwente . nl>
113 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
114 % License
115 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
116 % The program i s f r e e f o r non−commercial academic use .
117 % Please contact the author i f you are i n t e r e s t e d in
118 % using the software f o r commercial purposes . The
119 % software must not modified or re−d i s t r i b u t e d without
120 % p r i o r permission of the authors .
121 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
122 % Changes
123 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
124 % 2011/09/19
125 p = inputParser ;
126 p . addRequired ( 'A ' ,@(x ) a l l ( i s f i n i t e (x ( : ) ) ) & & . . .
127 s i z e (x , 1 )==3 && a l l (x ( : ) >0) ) ;
128 p . addRequired ( 'B ' ,@(x ) a l l ( i s f i n i t e (x ( : ) ) ) & & . . .
129 s i z e (x , 1 )==3 && a l l (x ( : ) >0) ) ;
130 p . addRequired ( ' g r i d _ s t e p ' ,@(x ) i s s c a l a r (x ) & & . . .
131 x>0 && x<1) ;
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132 p . parse (A , B , grid_step ) ;
133 A = p . Results . A ;
134 B = p . Results . B ;
135 grid_step = p . Results . grid_step ;
136 %−−−−C o l l e c t and declare parameters/ v a r i a b l e s−−−−−−−−−−−−
137 posLin = A ( 1 , : ) ; pricesLin = A ( 2 , : ) ; thetaLin = A ( 3 , : ) ;
138 posExp = B ( 1 , : ) ; pricesExp = B ( 2 , : ) ; thetaExp = B ( 3 , : ) ;
139 num_assets_lin = length (posLin ) ;
140 num_assets_exp = length (posExp ) ;
141 mu_grid = 1:−grid_step : 0 ; grid_size = length (mu_grid ) ;
142 %−−−−Compute optimal s t r . & proceeds ( l i n . proceeds )−−−−−
143 tmp_1 = mu_grid ( : ) ones ( 1 ,num_assets_lin ) ; % Compute opt .
144 tmp_2 = thetaLin ( ones ( 1 ,grid_size ) , : ) ; % l i q . s t r . ( x )
145 strat_lin = posLin ( ones ( 1 ,grid_size ) , : ) ; % f o r a given
146 strat_lin (tmp_1>tmp_2 ) = 0 ; % mu g r i d
147 tmp_3 = ones (grid_size , 1 ) pricesLin ; % Compute
148 [proceeds_lin , ~ ] = linproceeds (tmp_3 , tmp_2 , . . . % proceeds
149 strat_lin ) ;
150 %−−−−Compute optimal s t r . & proceeds ( exp . proceeds )−−−−−
151 strat_exp_u = ones (grid_size , num_assets_exp ) ;
152 f o r i=1:num_assets_exp % compute
153 strat_exp_u ( : , i ) = (−1/thetaExp (i ) ) . . . % unconstr .

154 log (mu_grid ) ; % x f o r
155 end % mu g r i d
156 strat_exp_c = min (strat_exp_u , . . . % adj . f o r
157 posExp ( ones ( 1 ,grid_size ) , : ) ) ; % pos . constr .
158 tmp_4 = ones (grid_size , 1 ) pricesExp ;
159 tmp_5 = ones (grid_size , 1 ) thetaExp ;
160 [proceeds_exp , ~ ] = expproceeds (tmp_4 , tmp_5 , strat_exp_c ) ;
161 %−−−−Combine r e s u l t s and c r e a t e look−up table−−−−−−−−−−
162 total_proceeds = proceeds_lin + proceeds_exp ;
163 opt_liq_costs = strat_lin pricesLin ' + . . .
164 strat_exp_c pricesExp ' . . .
165 − total_proceeds ;
166 table = [mu_grid ' strat_lin strat_exp_c . . .
167 total_proceeds opt_liq_costs ] ;
168 liquidation_value = linproceeds (pricesLin , thetaLin , . . .
169 posLin ) + expproceeds (pricesExp , . . .
170 thetaExp , posExp ) ;
171 [row_default , ~ ] = f i n d (total_proceeds >= . . .
172 liquidation_value , 1 ) ;
173 %−−−−Function output−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
174 out = table ( 1 : row_default , : ) ;
175 end

Listing 3.2: Matlab implementation of the “grid-search” liquidation algorithm. Computation of the look-up table.
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176 function [costs , val , mu , . . .
177 lam , str ] = optliquidity (cash , posLin , . . .
178 pricesLin , thetaLin , . . .
179 posExp , pricesExp , . . .
180 thetaExp , alpha , . . .
181 grid_step )
182 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
183 % Synopsis
184 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
185 % [ costs , val ,mu, . . .
186 % lam , s t r ] = o p t l i q u i d i t y ( cash , posLin , pricesLin , . . .
187 % thetaLin , posExp , pricesExp , . . .
188 % thetaExp , alpha , g r i d _ s t e p )
189 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
190 % Description
191 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
192 % o p t l i q u i d i t y computes the opt . l i q . costs , l i q .−adj .
193 % value , optimal l i q . s t r a t e g y , and the marginal c o s t s
194 % of an a s s e t p o r t f o l i o , given a l i q u i d i t y c a l l of
195 % s i z e alpha .
196 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
197 % Inputs
198 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
199 % ( s c a l a r ) cash : cash p o s i t i o n ( non−negative )
200 % ( vector ) posLin : 1xN vector repr . the p o s i t i o n
201 % f o r a s s e t s with l i n e a r proc .
202 % ( vector ) p r i c e s L i n : 1xN vector represent ing a s s e t
203 % p r i c e s
204 % ( vector ) thetaLin : 1xN vector represent ing the
205 % f r i c t i o n para .
206 % ( vector ) posExp : 1xN vector repr . the p o s i t i o n
207 % f o r a s s e t s with exp . proc .
208 % ( vector ) pricesExp : 1xN vector represent ing a s s e t
209 % p r i c e s
210 % ( vector ) thetaExp : 1xN vector represent ing the
211 % f r i c t i o n para .
212 % ( s c a l a r ) alpha : L i q u i d i t y c a l l s i z e ( non−neg .
213 % r e a l number )
214 % ( s c a l a r ) g r i d _ s t e p : l e v e l of g r a n u l a r i t y of g r i d
215 % ( 0 , 1 )

216 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
217 % Outputs
218 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
219 % ( s c a l a r ) c o s t s : optimal l i q u i d t y c o s t s
220 % ( s c a l a r ) v a l : l i q u i d i t y−adjusted p o r t f o l i o
221 % value
222 % ( s c a l a r ) mu : mu given p o r t f o l i o at alpha [0 , 1 ]
223 % ( s c a l a r ) lam : lambda given p o r t f o l i o at alpha
224 % ( vector ) s t r : 1xN vector of optimal l i q u i d a t i o n
225 % s t r a t e g y
226 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
227 % Example
228 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
229 % [ c o s t s v a l mu lam s t r ] = o p t l i q u i d i t y ( 0 , 1 0 , 1 0 , . . .
230 % 0 . 9 5 , 1 0 , 1 0 , . . .
231 % 0 . 0 8 , 1 5 0 , 0 . 0 0 1 )
232 % c o s t s = 22.4773
233 % v a l = 177.5227
234 % mu = 0.5600
235 % lam = 0.7857
236 % s t r = 0 10.0000 7.2477
237 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
238 % Functions used
239 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
240 % inputParser , i s s c a l a r , i s f i n i t e , i s v e c t o r , a l l ,
241 % length , ones , l inproceeds , expproceeds , min , zeros ,
242 % mugridtable , interp1q , f i n d
243 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
244 % References
245 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
246 % [1 ] Loebnitz , K . and Roorda , B . (2011) . L i q u i d i t y
247 % Risk meets Economic C a p i t a l and RAROC.
248 % http : / / ssrn . com/ a b s t r a c t=1853233.
249 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
250 % Author
251 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
252 % K o l j a Loebnitz <k . loebnitz@utwente . nl>
253 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
254 % License
255 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−



116
�

A
p

p
en

d
ix

256 % The program i s f r e e f o r non−commercial academic use .
257 % Please contact the author i f you are i n t e r e s t e d in
258 % using the software f o r commercial purposes . The
259 % software must not modified or re−d i s t r i b u t e d without
260 % p r i o r permission of the authors .
261 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
262 % Changes
263 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
264 % 2011/09/19
265 p = inputParser ;
266 p . addRequired ( ' cash ' , @(x ) i s s c a l a r (x ) & & . . .
267 i s f i n i t e (x ) && x>=0) ;
268 p . addRequired ( ' posLin ' ,@(x ) a l l ( i s f i n i t e (x ( : ) ) ) & & . . .
269 i s v e c t o r (x ) && a l l (x>0) ) ;
270 p . addRequired ( ' p r i c e s L i n ' ,@(x ) a l l ( i s f i n i t e (x ( : ) ) ) & & . . .
271 i s v e c t o r (x ) && a l l (x>0) ) ;
272 p . addRequired ( ' thetaLin ' ,@(x ) a l l ( i s f i n i t e (x ( : ) ) ) & & . . .
273 i s v e c t o r (x ) && a l l (x>0) && a l l (x<=1) ) ;
274 p . addRequired ( ' posExp ' ,@(x ) a l l ( i s f i n i t e (x ( : ) ) ) & & . . .
275 i s v e c t o r (x ) && a l l (x>0) ) ;
276 p . addRequired ( ' pricesExp ' ,@(x ) a l l ( i s f i n i t e (x ( : ) ) ) & & . . .
277 i s v e c t o r (x ) && a l l (x>0) ) ;
278 p . addRequired ( ' thetaExp ' ,@(x ) a l l ( i s f i n i t e (x ( : ) ) ) & & . . .
279 i s v e c t o r (x ) && a l l (x>0) ) ;
280 p . addRequired ( ' alpha ' , @(x ) i s s c a l a r (x ) & & . . .
281 i s f i n i t e (x ) && x>=0) ;
282 p . addRequired ( ' g r i d _ s t e p ' , @(x ) i s s c a l a r (x ) & & . . .
283 i s f i n i t e (x ) && x>0 && x<1) ;
284 p . parse (cash , posLin , pricesLin , thetaLin , posExp , . . .
285 pricesExp , thetaExp , alpha , grid_step ) ;
286 cash = p . Results . cash ; posLin = p . Results . posLin ;
287 pricesLin = p . Results . pricesLin ;
288 thetaLin = p . Results . thetaLin ; posExp = p . Results . posExp ;
289 pricesExp = p . Results . pricesExp ;
290 thetaExp = p . Results . thetaExp ; alpha = p . Results . alpha ;
291 grid_step = p . Results . grid_step ;

292 %−−−−Declare basic v a r i a b l e s−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
293 num_assets_lin = length (posLin ) ;
294 num_assets_exp = length (posExp ) ;
295 num_assets = num_assets_lin + num_assets_exp ;
296 no_friction_1 = ones ( 1 ,num_assets_lin ) ;
297 no_friction_2 = ones ( 1 ,num_assets_exp ) ;
298 MtM_value = linproceeds (pricesLin , no_friction_1 , . . .
299 posLin ) + . . .
300 linproceeds (pricesExp , no_friction_2 , posExp ) ;
301 liquidation_value = linproceeds (pricesLin , thetaLin , . . .
302 posLin ) + . . .
303 expproceeds (pricesExp , thetaExp , . . .
304 posExp ) ;
305 %−−−−Function output−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
306 i f alpha <= cash

307 costs = 0 ; val = MtM_value + cash ;
308 mu = 1 ; lam = 0 ;
309 str = [min (cash , alpha ) zeros ( 1 ,num_assets ) ] ;
310 e l s e i f (alpha − cash ) <= liquidation_value

311 A = [posLin ; pricesLin ; thetaLin ] ;
312 B = [posExp ; pricesExp ; thetaExp ] ;
313 adjustedTable = mugridtable (A , B , grid_step ) ;
314 costs = interp1q (adjustedTable ( : , end−1) , . . .
315 adjustedTable ( : , end ) ,alpha−cash ) ;
316 val = MtM_value + cash − costs ;
317 mu = interp1q (adjustedTable ( : , end−1) , . . .
318 adjustedTable ( : , 1 ) ,alpha−cash ) ;
319 lambda = @(x ) (1−x ) . /x ; lam = lambda (mu ) ;
320 opt_str = adjustedTable ( : , 2 : end−2) ;
321 mu_grid = 1:−grid_step : 0 ;
322 str = [cash opt_str ( f i n d (mu_grid'<=mu , 1 ) , : ) ] ;
323 e l s e
324 costs = NaN; val = 0 ; mu = NaN; lam = NaN;
325 str = NaN ones ( 1 ,num_assets ) ;
326 end
327 end

Listing 3.3: Computation of optimal liquidity costs, the liquidity-adjusted value, the optimal liquidation strategy, and the marginal costs.
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4
Extensions of the framework

In this chapter, we discuss briefly several extensions of the basic framework pre-
sented in Chapter 2. In particular, we consider more complicated proceed func-
tions that allow for cross-effects and permanent price impacts, an alternative
capital allocation scheme, and the introduction of dynamics.

4.1 Asset cross-effects and permanent price impact

In the framework we presented in Chapter 2 we do not take into account asset cross-

effects and permanent price impacts for expository purposes. Here we briefly discuss

extending our formalism in these directions. Recall that we assumed that asset proceed

functions G i ∈ G are mappings of the form G i :R+→R+ and that portfolio proceeds are

simply the sum of the asset proceed functions:

G (p ) =
N
∑

i=0

G i (p i ).

Asset cross-effects deal with the possibility that liquidating one asset might influence

the proceeds of liquidating other assets. This influence can be positive or negative.

Cross-effects describe dependent secondary asset markets and can allow us to formalize

forms of “spill-over” effects (cf., for instance, Schoenborn (2008)). Formally, we can

simply remove the assumption that the portfolio proceeds are the sum of the individual

asset proceed functions. In particular, let us consider only negative cross-effects and

that the portfolio proceeds adjusted for these effects have an additive form:

eG (x ) :=G (x )−Cross(x ),
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where G is a portfolio proceed function and Cross : P→R+ so that for all i

Cross(0, . . . , p i , . . . , 0) = 0,

and for x , y ∈P
x ≥ y =⇒ Cross(x )≥Cross(y ).

The idea of asset cross-effects is best illustrated by a simple example.

Example 4.1 Simple incorporations of asset cross-effect. Suppose we have a portfolio

proceed function given by G (x ) = x0+
∑N

i=1 Vi/θi (1−e−θi x i ). Clearly, we have that G i ∈ G
for all i . Consider the following formalization of asset cross-effects:

eG (x ) =G (x )−Crossi (x ),

=G (x )−
N
∑

i=1

G i (x i )(1− e−βi x̄ i ),

where x̄ i :=
∑

j 6=i x j and βi ≥ 0 for all i and β0 = 0. Let us consider a simple numerical

example. Assume that N = 2 and suppose we have the following parameter values:

V1 = 10, V2 = 10,θ1 = 0.04,θ2 = 0.08,β1 = 0.01, and β2 = 0.05. Plots of the total proceeds

with and without asset cross-effects as a function of the two assets can be found in

Figure 4.1. We assume that the cash position is zero. �

It should be clear that introducing the asset cross-effects will have an impact on

Lemma 2.10. We think that asset cross-effects may be a valuable element in an analysis

of systemic risk involving multiple banks and liquidity risk.

Let us now turn towards permanent price impacts. The academic literature iden-

tified two basic qualitative features of market frictions (see, e.g., Almgren and Chriss

(2001)): (1) the size of an order influences the transaction price itself and (2) the price

of transactions after a large order is affected as well, but to a smaller extent. The former

effect is called temporary price impact and the latter is called permanent price impact.

In our original framework we have only dealt with temporary price impacts. Clearly,

permanent price impacts play an important role as soon as one considers multiple

time periods, such as the problem of optimally liquidating a portfolio over time. As

our formalism is essentially static, it is not obvious that we miss out by not considering

permanent price impacts. However, a careful study of the optimal liquidation problem

and our subsequent use of the optimal liquidity costs shows that we do consider im-

plicitly a period beyond the liquidation as we value the asset portfolio at the frictionless

value is unaffected by our liquidation.

Let us define the value of a portfolio p ∈ P after we liquidate 0 ≤ x ≤ p without

permanent price impacts as follows:

V (p ,x ) :=V (p −x )+G (x ).

Note that we have that V α(p ) =V (p ,x ∗α), where x ∗α := arg min{C (x ) |GT (x ) =α,0≤ x ≤
p}. Introducing permanent price impacts, we get

eV (p ,x ) :=V (p −x )−Perma(p ,x )+G (x ).
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(a) Proceeds without asset cross-effect
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(b) Proceeds adjusted for asset cross-effects

Figure 4.1: Plots, based on Example 4.1, of the proceeds with (bottom) and without (top) asset
cross-effects. The negative effect of cross-effects is clearly visible for liquidations involving
large amounts of both assets. Notice that the proceeds with asset cross-effects is not monotone
anymore.
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We do not go into the desirable properties of Perma here but note that Huberman and

Stanzl (2004) argues that permanent price impacts should be linear in transaction sizes

to rule out quasi-arbitrage opportunities. The simplest way to incorporate permanent

price impacts into our formalism is solely for valuation purposes, leaving the optimiza-

tion problem as before. In particular, the liquidity-adjusted value of a portfolio given a

liquidity call and subject to permanent price impacts is then given by

eV α(p ) :=







eV (p ,x ∗α), for p ∈Lα

0, for p /∈Lα.

However, this approach is not as interesting as taking the permanent price impacts into

account in the optimization problem. Such a new optimization problem should balance

the possible trade-off between temporary and permanent price impacts. We can

imagine that a particular asset has low temporary price impacts but large permanent

effects. Hence, liquidating this asset is good for servicing the liquidity call but is bad for

the ex-post portfolio valuation. First, recall the original optimal liquidation problem:

C α(p ) :=







min{C (x ) |G (x ) =α for some 0≤ x ≤ p}, for p ∈Lα

V (p ), for p /∈Lα.

With permanent price impacts, the bank now attempts to minimize the total liquidity

costs of meeting the liquidity call, consisting of the immediate liquidity costs and the

ex-post valuation effect or maximizing the liquidity-adjusted value:

V
α
(p ) :=







sup{ eV (p ,x ) |G (x ) =α for some 0≤ x ≤ p}, for p ∈Lα

0, for p /∈Lα.

While conceptually interesting, we believe these two extensions may remain a theoreti-

cal exercise as it will be difficult to use them in practice due to data problems.

4.2 Capital allocation revisited

We have seen in Chapter 2 that, if we take a portfolio optimization perspective, Tasche’s

soundness is a reasonable requirement and leads to the Euler allocation scheme, even

in the face of liquidity risk. In this section, we take a different perspective and consider

the problem of adjusting the stand-alone risk of a business unit for liquidity risk. In

practice, the stand-alone risk contributions play an important role in assessing the

risk of a business unit. Formally, the stand-alone risk contribution for monetary risk

measures is defined, in the case of no liquidity risk, by

ρSta(p i ) := p iρ(X i ).

The liquidity-adjusted stand-alone risk contribution is ambiguous since we have a

portfolio-wide liquidity costs term C A
T (bp ). In order to change this we need to consider



4.2 Capital allocation revisited � 123

the problem of allocating the optimal liquidity costs per scenario to assets/business

units p1, . . . , pN .1 In our model the liquidity call α occurs on a portfolio level, turning

the optimal liquidity costs C α(p ) essentially into what is known as common costs. There

is an extensive literature about the fair allocation of common costs (see, for instance,

Hougaard (2009)). It seems reasonable that a “fair” liquidity cost allocation principle

should relatively reward the business units that provide liquidity (liquidity provider)

and relatively penalize the business units that consume liquidity (liquidity consumer).

Let us denote by Πi (p ,C α) the allocated optimal liquidity costs of portfolio p and

liquidity call α to the i th business unit. Furthermore, let u i := p i Vi

V (p ) ∈ [0,1] denote

the portfolio weight of asset i with respect to the MtM value. Clearly, we have that
∑N

i=0 u i = 1. Let x p ,α
i stand for the i th position of the optimal liquidation strategy of

a given p ∈ P and liquidity call α. A simple way to capture the qualitative fairness

property described above is to call Π fair if

for α> 0 and x p ,α
i > 0 G i (x

p ,α
i )

�

>
=
<

�

αu i =⇒ Πi (p ,C α)
�

<
=
>

�

u i C α(p ). (4.1)

The intuition of the fairness condition is reasonably straightforward: the assets that

provide more cash under the optimal liquidation strategy in the case of a liquidity

call than the proportional MtM value weighted liquidity call should be allocated less

liquidity costs than the proportional MtM value weighted total liquidity costs. That way

we reward liquidity providers and penalizes liquidity consumers, taking into account

size differences. Next, we collect some basic technical properties that an allocation

scheme should have, in addition to the fairness principle.

Definition 4.2 Sound liquidity cost allocation principle. A liquidity cost allocation

scheme Π is sound if it is fair according to Equation 4.1 and satisfies the properties:

1. No liquidity costs

C α(p ) = 0 =⇒ Πi (p ,C α) = 0 for i = 0, . . . , N ,

2. Total allocation
N
∑

i=0

Πi (p ,C α) =C α(p ),

We suggest to use Definition 4.2 as a yardstick by which allocation principles can be

evaluated. Let us consider some natural allocation principles.

Example 4.3.

1. the proportional liquidity cost allocation principle allocates to asset i :

ΠProp
i (p ,C α) := u i C α(p ) i = 0 . . . , N .

2. the realized liquidity cost allocation principle allocates to asset i the realized

liquidity costs:

ΠReal
i (p ,C α) :=C (x p ,α

i ) i = 0 . . . , N .

1Since we consider the allocation of the optimal liquidity costs per scenario, we suppress the A and T
notation and write Cα(p ) to improve the readability.
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3. the normalized Euler liquidity cost allocation principle allocates to asset i the

normalized partial derivative of the optimal liquidity costs with respect to p i ,

scaled by the asset position p i :2

ΠEuler
i (p ,C α) :=

p i
∂ Cα(p )
∂ p i

∑N
i=0 p i

∂ Cα(p )
∂ p i

C α(p ) i = 0 . . . , N .

4. the liquidity consumer/provider liquidity cost allocation principle allocates to

asset i 3

ΠLCP
i (p ,C α) :=











0, if α= 0,

C α(p )
�

2u i −
G i (x

p ,α
i )
α

�

, if 0<α≤G (p ),

C α(p )
�

2u i − G i (p i )
α

�

, if α>G (p )

i = 0 . . . , N .

�

Lemma 4.4.

1. The proportional liquidity cost allocation principle ΠProp is not sound.

2. The realized liquidity cost allocation principle ΠReal is not sound.

3. The normalized Euler liquidity cost allocation principle ΠEuler is not sound.

4. The liquidity consumer liquidity cost allocation principle ΠLCP is sound.

Proof of Lemma 4.4.

1. It is easily verified by counter-example that ΠReal fails the fairness axiom.

2. It is easily verified by counter-example that ΠReal fails the fairness axiom. In fact,

the principle works exactly in the other direction as it rewards the illiquid assets

and punishes the liquid ones.

3. Let us prove the claim by counterexample. Given a liquidity call function formal-

ization as in Section 2.8. Then for C α(p ) differential in the neighborhood of p i

and excluding the cases that x i = 0 and x i = p i , the partial derivative scaled by

the i th position is given by

p i
∂ C α(p )
∂ p i

= p i
Vi

V (p )
αλp = u iαλp

The normalized Euler allocation to the i th position is then given by

ΠEuler
i (p ,C α) =

u iαλp

αλp

∑N
i=0 u i

C α(p ) = u i C α(p ),

which is the same as the proportional rule and hence fails the fairness axiom.

4. As the case that α> 0 and x p ,α
i > 0 corresponds to 0<α≤G (p ), we need to show

that ΠLCP
i (p ,C α) = C α(p )

�

2u i −
G i (x

p
i )

α

�

satisfies the axiom of Rewards liquidity

2We consider the normalized version to guarantee the total allocation property for the liquidity costs.
3Note that in the worst case an asset gets assigned 2u i Cα(p ) using ΠLCP and that in a very good case

the costs can be negative.
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providers. We have that

ΠLCP
i (p ,C α)
C α(p )

= u i−
�G i (x

p ,α
i )
α

−u i
�

< u i

whenever G i (x
p ,α
i )>αu i , which is exactly condition in the axiom.

Let us illustrate the fairness property in an simple example.

Example 4.5 Realized versus liquidity consumer allocation principle. Consider an

asset portfolio p = (p0, p1, p2) = (0,10,10), a liquidity call of α = 100, MtM values of

V1 = 10 and V2 = 8, and exponential asset proceed functions with θ1 = 0.08 and θ2 = 0.02.

The portfolio-wide liquidity costs are C 100(p ) = 11.05. The optimal liquidation strategy

is x = (0, 3.1, 10). Now let us compare the realized and the fair liquidity cost allocation

principle. First the realized cost approach:

ΠReal
1 (p ,C α) = 3.1×10−G1(3.1) ΠReal

2 (p ,C α) = 10×10−G2(10)

= 3.56 = 7.49

The alternative approach gives us:

ΠLCP
1 (p ,C α) = 11.05(2 100

180
− 27.49

100
) ΠLCP

2 (p ,C α) = 11.05(2 80
180
− 72.51

100
)

= 9.24 = 1.81

Using ΠReal does not capture the notion of assets being liquidity provider or liquidity

consumer relative to the average portfolio-wide liquidity costs. As a result, Asset 2 gets

penalized more so than Asset 1 (3.56 versus 7.49) even though the latter benefits from

the existence of the former. This changes when we use ΠLCP instead. The cost term

penalizes Asset 1 and rewards Asset 2 (9.24 versus 1.81) for the simple reason that Asset

2 is used more in the optimal liquidation strategy (3.10 versus 10) and hence can be

seen as a liquidity provider in times of crisis, while Asset 1 is used but to a lesser degree

(less than its proportional MtM value) and hence can be seen as a liquidity consumer.�

Using ΠLCP(p ,C α) as our liquidity cost allocation principle, we can define the

liquidity-adjusted stand-alone risk contribution as follows:

ρA
Sta(p i ) :=ρ(p i X i −ΠLCP

i (p ,C α)). (4.2)

It should be clear that summing up the liquidity-adjusted stand-alone risk contributions

generally does not lead to the overall L-EC, i.e., the total allocation property does not

hold. While this is not a problem, since we wanted the stand-alone risk contribution

but adjusted for liquidity risk, we can use the liquidity cost allocation principle as a

normalizing factor to ensure the total allocation property. We present this idea next.
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4.2.1 Alternative risk allocation

Let us define the diversification effect of a business unit with respect to the Euler risk

contributions without liquidity risk by

Div(p i |p ) :=ρSta(p i )−ρEuler(p i |p ).

We know that Div(p i |p )≥ 0 for homogeneous and subadditive risk measure (Tasche,

2000, 2008). In other words, if risk contributions to a homogeneous and subadditive

risk measure are calculated as Euler contributions, then the contributions of single

assets will never exceed the assets’ stand-alone risks, hence Div(p i |p )≥ 0.

While formally simply a tautology, it is useful to consider the Euler risk contribution

as the sum of the stand-alone risk contribution and the diversification effect, written as

follows,

ρEuler(p i |p ) =ρSta(p i )−Div(p i |p ).

For practical reasons it would be useful if we could add a liquidity risk effect term to the

equation to arrive at the liquidity-adjusted risk contribution of a business unit. Define

the total increase in risk due to liquidity risk by

∆Liq(bp ) :=ρ(X A(bp ))−ρ(X (p )) = L-EC(bp )−EC(p ).

A simple candidate for the liquidity-adjusted risk contribution of a business unit i and

hence the liquidity risk term is

L-EC(p i |bp ) :=ρEuler(p i |p )+
ρ(ΠLCP

i (bp ))
∑N

i=0ρ(Π
LCP
i (bp ))

∆Liq(bp )

=ρSta(p i )−Div(p i |p )+
ρ(ΠLCP

i (bp ))
∑N

i=0ρ(Π
LCP
i (bp ))

∆Liq(bp )

=ρSta(p i )−Div(p i |p )+Liq(p i |bp ), (4.3)

where

Liq(p i |bp ) :=
ρ(ΠLCP

i (bp ))
∑N

i=0ρ(Π
LCP
i (bp ))

∆Liq(bp ).

Clearly, the total allocation property holds:

L-EC(bp ) =
N
∑

i=0

L-EC(p i |bp ) =
N
∑

i=0

ρSta(p i )−
N
∑

i=0

Div(p i |p )+
N
∑

i=0

Liq(p i |bp ).

From a performance measure perspective we can use the following definition of the

liquidity-adjusted RAROC of business unit i ,

L-RAROC(p i |bp ) :=
p i E [X i ]−E [Πi (p ,C A

T (bp ))]
ρSta(p i )−Div(p i |p )+Liq(p i |bp )

.

4.3 Portfolio dynamics

In our liquidity risk formalism we adopt the standard one period setup of the capital

determination problem as proposed by Artzner et al. (1999). In the discussion of
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Chapter 2 we recognized that the static setting is a limitation of our formalism. In

particular, we agreed that it is difficult to reduce a bank’s funding risk to a single

liquidity call number, as banks face a dynamic multi-period net cash flow balance that

is a complex combination of cash in- and outflows streams arising from their asset

and liability portfolio. In addition, recovery actions of banks facing serious liquidity

problems are more complex and might involve actions of different durations. While

we have chosen simplicity over completeness in this thesis, developing a dynamic

multi-period formalism without succumbing to intractability is an interesting topic.

Mathematically speaking, modeling all multi-period (stochastic) cash in- and cash

outflows of a bank’s portfolio pair as well as specify multi-period recovery strategies,

would require a multi-period stochastic optimization framework with a multi-variate

stochastic process and perhaps a time-consist dynamic risk measures (see, for instance,

Artzner et al. (2007) and Roorda et al. (2005)).

A key difference between the static approach and any dynamic extensions of our

formalism is that portfolio positions become stochastic. This occurs even if we disregard

exogenous / autonomous portfolio changes,4 because meeting liquidity calls leads to

portfolio changes. In Chapter 2 we could avoid this aspect because we did not consider

periods beyond T . Formally, this means that we move towards random portfolio pairs,

i.e., bp (ω). Note that this also requires the specification of the relationship between

liquidity calls and liability positions, which goes beyond the liquidity call function A

function.

Moving to a multi-period setting naturally leads to the notion of anticipating and

preparing what may happen in future periods, i.e., optimization. In our context this

means that a bank has to balance the minimization of liquidity costs now and being

prepared for liquidity calls in future periods. While a multi-period portfolio optimiza-

tion problem with liquidity risk is interesting in its own rights, it deviates from or at

least generalizes the typical capital determination problem that we focused on in this

thesis. The line between quasi-autonomous descriptive bank behavior and optimiza-

tion strategies can become blurry pretty quickly. Either way, our results on the static

formalism could be used as a building block for multi-period formalism. We think that

stochastic programming is a suitable general framework for extending our formalism to

the multi-period setting without losing tractability. A good example in a similar context

is the model presented in Jobst et al. (2006).

Another way to extend our formalism to the dynamic setting is to incorporate our

ideas into structural Merton-type credit risk models. A common approach to model

solvency risk is by threshold models based on the firm-value interpretation of default. In

this approach the asset-value of a firm is modeled as a nonnegative stochastic process

and the value of liabilities are represented by some threshold. In line with economic

4Here we mean, for instance, reactions of the bank and bank’s investors to scenarios with regard to
replacing maturing assets and liabilities, portfolio growths, reductions of exposures, reclassifications of
assets as seen during the Subprime crisis etc. These quasi-autonomous descriptive strategies of a bank
are sometimes known as management interventions and factored into the market risk and interest rate
risk analyses in banks.
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intuition, it is assumed that default occurs if the asset value of the firm crosses the

value of the liabilities. In the simplest case, one considers a fixed risk management

horizon T at which a bank can default. So-called first-passage time models (Black and

Cox (1976), Longstaff and Schwartz (1995)) abandon the assumption that insolvency

can only occur at some risk management horizon T and assume that default can occur

as soon as the threshold is hit. Credit portfolio models used in the industry, such as

the popular KMV model, typically use multivariate normal distributions with factor

structure for the critical value (so called Gauss-copula models).5 In order to incorporate

our idea of liquidity risk into the threshold model class is to replace the standard value

with our liquidity-adjusted value. This involves two basic assumptions. First, the bank

is subject to random liquidity shocks. Such shocks reflect unexpected liquidity cash

calls. With a given probability the bank has to sell part of its position immediately to

generate the cash call. The realized optimal liquidity costs decrease the bank’s asset

value on top of any non-liquidity risk decreases. More formally, let us denote the value

of the bank’s assets at time t > 0 by Vt (p t ). It is the bank’s value just before it learns

what the size of the liquidity call is given by

Vt (p ) =
N
∑

i=0

p t ,i Vt ,i .

As discussed before we need to keep track of portfolio changes. Conditional on the

realization of a liquidity call of size αt the liquidity-adjusted value of the bank at time t

is given by

V α
t (p t ) =Vt (p t )−C α

t (p t ).

In line with first-passage model, default occurs at the stopping time:

τ := inf{t ≥ 0 |V α
t (p t )≤Dt },

where Dt is a, possibly stochastic, default barrier. Notice that via the 100% rule it might

be possible that the liquidity-adjusted value jumps to zero despite being far away from

the default barrier. Now the default indicator variable for a given risk management

horizon T is

Y := 1{τ≤T }

and the corresponding PD is given by

PD(0,T ) :=P{Y }.

Applying the above ideas requires the modeling of the liquidity calls as well as the

proceeds functions as stochastic processes. The simplest approach is to model the

liquidity calls as a top-down stochastic process correlated with the bank’s asset value.

For instance, if ensure that the correlation is negative, we can model that during times

of solvency pressure the likelihood of liquidity shocks would tend to increase and hence

5It is interesting that various threshold models, including the KMV model, can be reformulated as a
mixture model (see McNeil et al. (2005)), similar to the one we used in Chapter 3 to model the credit risk
of the bank’s loan book and the bank’s liquidity calls.
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the default risk. Modeling the proceed function as a stochastic process can become very

complex if we do not simplify considerably as we have done throughout the examples

in this thesis.
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5
Conclusions

It has been the purpose of this thesis to develop a mathematical framework for mea-

suring a bank’s liquidity risk and study its properties. In particular, we set out to make

economic capital and RAROC sensitive to liquidity risk in a rigorous way and address

the problem of capital allocation under liquidity risk.

We introduced the concept of optimal liquidity costs and liquidity cost profiles as a

quantification of a bank’s illiquidity at balance sheet level. This lead to the key concept

of liquidity-adjusted risk measures defined on the vector space of asset and liability

pairs under liquidity call functions. While the explicit move towards the vector space of

balance sheets (portfolio pairs) has not been entirely new, since Acerbi and Scandolo

(2008) proposed something similar, we expanded on previous results by introducing

liquidity call functions and by maintaining the important role played by Type 2 liquidity

risk. We studied the model-free effects of adding, scaling, and mixing balance sheets.

In particular, we could show that convexity and positive super-homogeneity of risk

measures is preserved in terms of positions under the liquidity adjustment, given

certain conditions with regard to Type 2 liquidity risk are met, while coherence is

not, reflecting the common idea that size does matter. Nevertheless, we argued that

coherence remains a natural assumption at the level of underlying risk measures for its

reasonable properties in the absence of liquidity risk. Convexity shows that even under

liquidity risk the concept of risk diversification survives. Positive super-homogeneity

confirms the common intuition that the level of riskiness generally increases with

increased position size when liquidity risk is present. We showed that liquidity cost

profiles can be used to determine whether combining positions is beneficial or harmful.

In particular, we have shown that combining positions with the same marginal liquidity

costs generally leads to a increase of total liquidity costs. This effect works in opposite
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direction of the subadditivity of the underlying risk measure, showing that a merger

can create extra risk in the presence of liquidity risk. Finally, we addressed the liquidity-

adjustment of the well-known Euler allocation principle for risk capital. We could show

that such an adjustment is possible without losing the soundness property that justifies

the Euler principle. However, it is in general not possible to combine soundness with

the total allocation property for both the numerator and the denominator in liquidity-

adjusted RAROC.

In addition, we have presented an illustration of the formalism in the context of a

semi-realistic economic capital setting. We characterized the bank’s funding liquidity

risk with the help of a Bernoulli mixture model, using the bank’s capital losses as

the mixing variable, and use standard marginal risk models for credit, market, and

operational risk. After deriving the joint model using a copula, we analyzed the impact

of balance sheet composition on liquidity risk. Furthermore, we developed a simple,

robust, and efficient numerical algorithm based on the results in Lemma 2.10 for

the computation of the optimal liquidity costs per scenario. While the optimization

problem behind the liquidity cost term is convex and hence readily solvable with

standard software tools, our algorithm is generally more efficient. We have shown that

even a simple but reasonable implementation of liquidity risk modeling can lead to

a significant deterioration of capital requirements and risk-adjusted performance for

banks with safe funding but illiquid assets, exemplified by the retail bank, and banks

with liquid assets but risky funding, exemplified by the investment bank. In addition,

we have shown that the formal results of Theorem 2.26 on p. 38 are relevant, especially

the super-homogeneity result of liquidity-adjusted risk measures. Overall bank size

and the non-linear scaling effects of liquidity risk become apparent for banks that have

to rely on a large amount of fire selling. Overall, our illustration confirms the common

intuition that a bank’s liquidity risk management must involve the careful balancing

between the market liquidity risk of its assets and the funding risk of its liabilities.

5.1 Limitations and future research

While we think that the formalism presented in this thesis is a step in the right direction

in making liquidity risk measurement and management more rigorous, there are several

limitations as well as promising opportunities for future research.

The concept of random liquidity call functions is crucial in describing the inter-

action between funding and market liquidity risk in our formalism. While we have

presented some ideas in our illustration, they were still highly stylized. Realistic model-

ing of this concept is a critical, yet underdeveloped research topic. The more we know

about what risk factors affect a bank’s liquidity risk and about how these factors can be

influenced, the more advice we will be able to give banks and policy makers about how

to control liquidity risk of individual banks and hence improve financial stability as a

whole.

In our analysis, liquidity risk has been inherently static: banks faced a single liq-
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uidity call at some time horizon and had to optimally recover from it instantaneously.

Practitioners might argue that our static approach neglects essential dynamic (timing)

elements of liquidity risk. In particular, funding risk cannot be reduced to a single

liquidity call number, as banks face a dynamic multi-period net cash flow balance

that is a complex combination of cash in- and outflows streams arising from its asset

and liability portfolio. In addition, recovery actions of banks facing serious liquidity

problems are more complex and might involve actions of different durations. The

feasibility of these measures are a function of the nature, severity, and duration of the

liquidity shocks, i.e., they are a function of the state of the world and time. Developing

a dynamic multi-period framework, without succumbing to intractability, is an interest-

ing topic for future research. Apart from realistic but tractable multi-period stochastic

models, a generalization of our static formalism to the dynamic setting may require

the use of time-consist risk measures (dynamic risk measure theory) as well as a clear

formalization of the space acceptable strategies.

Finally, we think that addressing the link between a bank’s interest rate risk and

our formalism deserves some attention. On the one side, there is the connection

between current ALM techniques in banks and the liquidity call function that we have

not covered in detail in this thesis. On the other side, there is the link between the

allocation of liquidity costs as presented in our formalism and funds transfer pricing

frameworks used in practice by banks.

5.2 Implications

Our results may have implications for financial regulations and banks. Liquidity-

adjusted risk measures could be a useful addition to banking regulation and bank

management, as they capture essential features of a bank’s liquidity risk, can be com-

bined with existing risk management systems, possess reasonable properties under

portfolio manipulations, and lead to an intuitive risk ranking of banks. In fact, our

framework may be seen as a more elaborate and rigorous version of the Liquidity

Coverage Ratio of Basel III (BIS, 2010). Furthermore, combining our framework with

the ideas of mark-to-funding in Brunnermeier et al. (2009) and “CoVaR” in Adrian

and Brunnermeier (2009) may help regulators manage systemic risk, originating from

bank’s individual liquidity risk exposure. Internally, banks could use liquidity-adjusted

Economic Capital and liquidity-adjusted RAROC, as well as the allocation schemes, to

manage their risk-reward profile.

Our findings regarding the properties of liquidity-adjusted risk measures may have

implications for banks and risk measure theory. The result that under liquidity risk

the diversification effect of risk is not generally ensured despite using a subadditive

underlying risk measure and the result that size matters may affect how bank managers

and financial regulators think about bank expansions and mergers. Furthermore, our

findings regarding the preservation of convexity under liquidity risk strengthens the

argument for using coherent risk measures as underlying risk measures due to their
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reasonable properties in the absence of liquidity risk.
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Liquidity risk is a crucial and inherent feature
of the business model of banks. While banks
and regulators use sophisticated mathemati-
cal methods to measure a bank’s solvency risk,
they use relatively simple tools for a bank’s liq-
uidity risk such as coverage ratios, sensitivity
analyses, and scenario analyses. In this thesis
we present a more rigorous framework that al-
lows us to measure a bank’s liquidity risk within
the standard economic capital and RAROC set-
ting. In particular, we introduce the concept of
liquidity-adjusted risk measures defined on the
vector space of balance sheet positions under
liquidity call functions. Liquidity-adjusted risk
measures could be a useful addition to banking
regulation and bank management as they cap-
ture essential features of a bank’s liquidity risk,
can be combined with existing risk manage-
ment systems, possess reasonable properties
under portfolio manipulations, and lead to an
intuitive risk ranking of banks.
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